Кантор. Бесконечность в математике. | страница 32
Видимо, «ловкий маневр» Лампа удался, поскольку «Журнал Крелле» опубликовал статью Кантора в 84-м выпуске 1878 года, на страницах 242-258. Однако Кантор был настолько обижен неуважительным поведением Борхардта, что больше не отправил в этот журнал ни одной статьи.
Хотя Кантор в своем письме жаловался на Борхардта, главным противником публикации его статьи был Леопольд Кронекер, и Кантор прекрасно это знал.
Немецкий математик Кронекер, родившийся в 1823 году, был очень уважаем и обладал большим влиянием. Он занимался алгеброй, исчислением, арифметикой — особенно интересовали его точки их соприкосновения, — а также метеорологией, астрономией, химией и философией. В частности, он интересовался учениями Декарта, Лейбница, Канта, Спинозы и Гегеля.
В 1861 году по рекомендации Куммера и благодаря своим многочисленным наградам он был избран членом Берлинской академии наук, а в 1868 году — Парижской. Но несмотря на разносторонние математические интересы, научные методы Кронекера были весьма ограничены ввиду его философской позиции, которую можно описать знаменитой максимой:
Die Ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk («Бог создал натуральные числа, все остальное — дело рук человека»).
Прокомментируем одно любопытное следствие из теории Кантора. Для этого условимся, что термин «вычисление» и любой эвфемизм называют число, если определяют его точно, не оставляя места недопониманию. Например, «количество дней недели» — обозначение числа 7, как и «сумма чисел 6 и 1». «Соотношение между длиной окружности и ее диаметром» — обозначение числа π. «Число, которое начинается с 0,1100010000000 00000000001000..., где первая единица стоит на первом месте после запятой, вторая единица — на месте 1 ∙ 2 = 2, третья единица — на месте 1 ∙ 2 ∙ 3 = 6 и так далее», — название трансцендентного числа Лиувилля. Таким образом, мы можем доказать, что множество всех возможных чисел эквивалентно множеству натуральных чисел, тогда как множество вещественных чисел ему не эквивалентно. Другими словами, вещественных чисел больше, чем названий для них. Отсюда следует, что существуют неуловимые вещественные числа, которые нельзя никак назвать и определить. Существует бесконечное количество таких вещественных чисел, хотя и, разумеется, невозможно привести ни одного их примера, так как любое число, которое мы сможем продемонстрировать, обязательно должно обладать названием (которое мы используем, чтобы показать его). Это случай доказательства простого существования, рассуждения, в котором доказывается наличие объектов (однако пример их невозможно найти).