Кантор. Бесконечность в математике. | страница 15



Самым большим его желанием было получить место в университете Берлина или Геттингена, но пришлось довольствоваться положением в Галле. Он заступил на должность в 1869 году. Этот университет имел знаменательное прошлое, но в XIX веке слава его померкла. Кантор непрерывно пытался изыскать способ перевестись в Берлин или Геттинген, но все было напрасно, и ученый очень переживал по этому поводу.

В Галле под руководством Генриха Эдуарда Гейне (1821— 1881) Кантор окончательно сосредоточился на вычислении и с 1870 по 1872 год опубликовал пять статей (которые будут рассмотрены в следующей главе). В них он исследовал определенный тип бесконечных сумм. И хотя, как и бесконечные множества, они понимались потенциально, а не актуально бесконечными, именно вследствие этих первых работ в Галле Кантор задумался об актуальной бесконечности. Впервые она появилась в его научных трудах, хоть и неявно, в статье 1874 года.

Помимо публикации этой работы, разделившей его научную карьеру на «до» и «после», в 1874 году в жизни Кантора произошло еще одно важное событие — 9 августа он женился.

Валли Гутман, его невеста, тоже любила искусство, играла на фортепиано и брала уроки пения. Медовый месяц они провели в Интерлакене, туристическом городке Швейцарии. И чтобы лучше очертить характер ученого, отметим, что большую часть времени он беседовал о математике с Дедекиндом.

У Валли Гутман и Георга Кантора родились шестеро детей: четыре девочки и два мальчика. Веселый нрав Валли прекрасно дополнял серьезный и даже суровый характер Кантора и определял атмосферу их дома: как было принято в то время в кругах немецких университетских профессоров, семья вела очень активную общественную жизнь.


БЕСКОНЕЧНОСТЬ ПО КАНТОРУ

Теперь проанализируем статью liber eine Eigenschaft des Inbegriffes alter reellen algebraischen Zahlen («Об одном свойстве совокупности всех действительных алгебраических чисел»), опубликованную Кантором в 1874 году в «Журнале Крелле». В этой статье уже содержались основные идеи, которые позже позволили Кантору прийти к своей теории бесконечности, несмотря на то что Карл Вейерштрасс посоветовал ему скрыть их или хотя бы не подчеркивать их революционность. О чем же говорилось в статье? Что это были за идеи? Почему их следствия были столь провокационными? И что же это за «действительные алгебраические числа»?

Начнем анализ с одного из первых утверждений теории Кантора.

Оно гласит, что два множества предметов можно соотнести друг с другом, если член одного из них сопоставим с членом другого так, что ни в одном из этих множеств не останется члена без пары. Галилей проделал это с группами натуральных чисел и квадратных (см. рисунок).