Эйлер. Математический анализ | страница 13



С этого момента подразумевается, что если в арифметической формуле есть i, то

i= √-1.

Во время работы в Базеле Эйлер открыл формулу

e>xi = cos x + isin x

и преобразовал ее так, как только он, великий жонглер символами, был способен. Из этого простого выражения, известного как формула Эйлера, которое связывает комплексные числа с тригонометрией, в последующие столетия произошла, как мы увидим в главе 3, большая часть математического анализа.

Во времена Эйлера пользовались большой популярностью логарифмы — инструмент вычисления, открытый в XVI веке. Однако их потенциал оставался невостребованным вплоть

до появления работ швейцарского ученого. Представим их определение: если а положительное число, называемое основанием, N также положительное число и верно равенство

N = α>x,

то говорится, что х — логарифм N и пишется х = log>2N. Или:

N = α>logN.

Если основание логарифма — число е, то пишется In N вместо log N.


Господа: это абсолютно верно и совершенно парадоксально, мы не можем понять этого и не знаем, что это означает, но мы это доказали и, следовательно, знаем: это правда.

Бенджамин Пирс (1809-1880), профессор Гарварда о так называемой

ФОРМУЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ ЭЙЛЕРА


Число -1 можно записать как -1 =1 + 0i и, следовательно, рассматривать его в качестве комплексного числа. Подставим его в формулу Эйлера:

-1 = 1 + 0i = cosπ + isinπ = e>xi.

Теперь рассмотрим только начало и конец этого равенства и используем натуральный логарифм:

In(-1) = In(e>xi) = πi.

Таким образом, Эйлер получил точное значение натурального логарифма от -1, отрицательного числа. На этом ученый приостановил интеллектуальную атаку на данную область и уехал в Санкт-Петербург. Только в 1751 году, почти 25 лет спустя, Эйлер обнародовал этот результат в надлежащем виде вместе со многими другими в фундаментальном труде "Введение в анализ бесконечно малых".

Как древние воины, которые продолжали выпускать стрелы даже при отступлении, Эйлер уехал в Россию и отложил изучение отрицательных логарифмов, продемонстрировав, тем не менее, свое будущее оружие.

ГЛАВА 2

Ряды, постоянные и функции: Эйлер в России

Уже в возрасте 20 лет Эйлер стал членом Петербургской академии наук. Так начался период его математического творчества, которому нет аналогов в истории данной науки. В это время ученый открыл гамма-функцию (Г), дал определение постоянной е и сделал другие важные открытия в анализе и теории чисел, а также нашел решения двух задач, имевшие значительные последствия: Базельской задачи и задачи о мостах Кенигсберга.