Больцман. Термодинамика и энтропия | страница 49



Выдерживая свой дидактический стиль, он начинал с примера с семью молекулами, который был очень полезен для понимания последующего развития, когда число частиц стремится к бесконечности. Предполагалось, что эти семь молекул ограничены общей энергией 7ε, где ε — снова произвольное значение. Сначала нужно было найти, сколько распределений возможно при заданных ограничениях; простым методом проб и ошибок несложно прийти к выводу, что это число 15. Например, одно возможное состояние — это шесть молекул, не имеющих энергии, и одна с максимально возможной энергией; другое — пять молекул, не имеющих энергии, еще одна с 1ε и последняя с 6ε.

После получения этих распределений следующим шагом было вычислить, сколько комплексий было у каждого возможного состояния, что Больцман обычно называл "перестанавливаемостью", от слова "перестановка", и обозначал как В. Перестановки — это сочетания элементов, которые порождают одну и ту же конфигурацию. Осуществив необходимые расчеты, он заметил, что число перестановок значительно больше в промежуточных распределениях, то есть в тех, где энергия распределена более или менее равномерно (что на самом деле очень похоже на распределение Больцмана) между различными молекулами. Результат показан в следующей таблице.

Номер конфигурацииЭнергия каждой молекулыВ 
1.00000077
2.000001642
3.000002542
4.000003442
5.0000115105
6.0000123210
7.0000133105
8.0000223105
9.0001114140
10.0001123420

ВЕРОЯТНОСТЬ И ПЕРЕСТАНОВКИ

Вычисление вероятностей в теории Больцмана, по крайней мере для небольшого числа сочетаний, можно понять с помощью элементарной математики. Оно основано на так называемой "факториальной функции", которая обозначается восклицательным знаком и определяется так:

n! = n · (n - 1) · (n - 2) · (n - 3) · (...) · 1,

где л — любое число. То есть 3! равно 3 · 2 · 1 = 6, а 5! равно 5 · 4 · 3 · 2 х х 1 = 120. Предположим, у нас есть множество из л цветных шаров. Мы хотим узнать число возможных уникальных сочетаний. Начнем с небольшого числа шаров, а затем усложним ситуацию, добавив еще. При трех шарах красного (К), синего (С) и черного (Ч) цветов различные возможные сочетания, полученные методом проб и ошибок, следующие:

КСЧ, КЧС, СКЧ, СЧК, ЧКС, ЧСК.

Эти шесть сочетаний можно получить более элегантным способом. Если рассматривать первое положение, можно выбирать из трех шаров, во втором положении остается два варианта, а в третьем — один. Количество вариантов равно 3-21 = 6. Для случая с n разноцветных шаров этот метод легко расширить. Для первого положения у нас л вариантов, для второго остается (n - 1) и так далее. Конечное выражение следующее: