Больцман. Термодинамика и энтропия | страница 48
Больцман концентрировался на скоплении молекул и снова использовал дискретизацию энергии. Он предполагал, что общая энергия системы постоянна (то есть в сосуде, в котором находится газ, нет потерь ни тепла, ни материи) и, следовательно, должна быть распределена между молекулами. Его задачей было изучить, сколько возможных сочетаний доступно при распределении ее между всеми частицами газа и сколько из них дают те же самые макроскопические свойства. Поскольку если бы энергия могла принимать любые значения, то было бы бесконечное число сочетаний, он ввел требование того, чтобы она ограничивалась значениями, кратными некой произвольной величине ε.
Следующим шагом было выяснить, сколько молекул находится на каждом уровне энергии с учетом ограничений для общей энергии. Приведем следующий, очень упрощенный пример. Если общая энергия равна трем и есть всего три молекулы, могут быть следующие ситуации: либо у всех трех молекул одна и та же энергия 1, либо у одной из них энергия 3, а у других 0, либо у одной энергия 1, у другой 2, а у третьей 0. Состояние системы будет задано числом молекул каждой энергии, поскольку с макроскопической точки зрения не важно, какие отдельные молекулы имеют определенную энергию, важно только их число.
Другими словами, сначала надо выяснить, сколько существует возможных конфигураций для заданной энергии; как только они становятся известны, необходимо выяснить, какие из них породят одни и те же макроскопические свойства. Тогда всегда будет получатся, что у системы одно и то же число молекул на каждом энергетическом уровне.
Больцман окрестил каждое возможное индивидуальное состояние "комплексией", сегодня известное как "микросостояние*, поскольку это ненаблюдаемое микроскопическое состояние. Распределения энергии, где имеет значение только число молекул на энергетический уровень, известны как "макросостояние", поскольку они наблюдаемы макроскопически.
Дав определение термину "комплексия", Больцман перешел к определению числа, которое в итоге породило новое выражение для энтропии: "Теперь зададимся вопросом о числе В комплексий, в которых w>0 молекул обладает нулевой живой силой, w1 обладает живой силой 1 и так далее". Итак, В — это число комплексий, которые порождают одно и то же распределение энергии.
Следующий вопрос: каково самое вероятное распределение энергии? Для этого нужно было рассчитать число В для всех распределений и сравнить. Пропорция между В и общим числом комплексий — это вероятность того, что система будет находиться в состоянии с распределением энергий, заданном В. Начиная с этого места статья превращалась в трактат о вероятностях, и в ней полностью игнорировались физические детали.