Синхронизатор орбитального движения Луны | страница 6



2D = 2490І sin 2D, где амплитуда всего на 5 % превышает амплитуду вариации по Брауну [4,11]. Теперь заметим, что, при обсуждаемых двумерном движении Луны и одномерных колебаниях Земли, должны также иметь место периодические изменения геоцентрического расстояния до Луны. Амплитуда кривой этих изменений, переходящей нули в серединах между сизигиями и квадратурами, должна составлять» 1.41(b /2), при этом амплитуда соответствующих изменений горизонтального параллакса Луны составила бы 1.41(b /2)rE /(RL)2» 29І.19. Как упоминалось выше, у Брауна соответствующий вариации периодический член в разложении синуса горизонтального параллакса Луны имеет амплитуду 28І.33.

С учётом вышеизложенного, вариация и соответствующие ей изменения горизонтального параллакса Луны могут быть объяснены именно «невзаимной» кинематикой пары Земля-Луна, т. е. двумерным движением Луны и одномерными колебаниями Земли — около «центра системы». Мы не можем утверждать, что вывод об этих одномерных колебаниях Земли подтверждается данными Астрономических ежегодников, но, тем не менее, в приведённых там данных о геоцентрическом расстоянии до Солнца мы не усматриваем синодической волны с амплитудой 4640 км.

Теперь попробуем объяснить происхождение «невзаимной» кинематики пары Земля-Луна.


Синхронизатор орбитального движения Луны.

Ясно, что колебания Земли и её частотной воронки, вперёд-назад вдоль локального участка околосолнечной орбиты, порождаются не воздействиями Луны и не воздействиями Солнца. Нам придётся допустить, что эти колебания были специально организованы, для чего в алгоритм, управляющий тяготением пары Солнце-Земля [21], потребовалось внесение модификации. Эта модификация, как можно предположить, заключалась в добавлении слабой амплитудной модуляции гравитационной постоянной исключительно для пары Солнце-Земля — что, надо полагать, не сильно усложнило базовый алгоритм. Такая модуляция, с периодом в синодический месяц, практически не сказывается на текущем расстоянии между Солнцем и Землёй, и поэтому должна приводить лишь к соответствующей модуляции орбитальной скорости земной частотной воронки. При известной амплитуде b соответствующих линейных колебаний, можно рассчитать необходимую для этого амплитуду модуляции гравитационной постоянной: D G/G =2D V /V =4p b /VTSIN, где V» 30 км/с — средняя орбитальная скорость Земли, D V — амплитуда модуляции этой скорости, TSIN — синодический месяц. Подставляя численные значения, получаем, что D