Лейбниц. Анализ бесконечно малых | страница 50
1/x>r
где r не равно 1.
В своем методе он пользовался скорее алгебраической базой, чем геометрической, как частично делали Ферма и Роберваль. Чтобы найти площадь, замыкаемую кривой у = х>3, Уоллис использовал отношение между треугольниками и квадратами с одинаковой длиной основания. В них он провел неделимые линии, которые их образовывают, и сложил кубы их длин, поскольку мы работаем с х>3. Если есть только две линии, в треугольнике мы получаем длины со значениями 0 и 1, в то время как в квадрате обе линии равны 1. Получается следующее отношение:
(0>3+1>3)/(1>3+1>3) = 1/2 = 1/4+1/4.
Если взять три линии, то длины линий, находящихся в треугольнике, будут равны 0, 1 и 2, в то время как в квадрате во всех трех случаях они будут равны 2. Если взять четыре линии (см. рисунок), то в треугольнике измерения равны 0, 1, 2 и 3, в то время как в квадрате все линии имеют размер 3:
(0>3+1>3+2>3)/(2>3+2>3+2>3) = 9/24 = 6/24+3/24 = 1/4+1/8,
(0>3+1>3+2>3+3>3)/(3>3+3>3+3>3+3>3) = 36/108 = 27/108+9/108 = 1/4+1/12.
Как можно заметить, по мере увеличения числа линий результатом всегда является дробь 1/4 плюс каждый раз все меньшая дробь. При увеличении количества линий наступит момент, когда вторая дробь станет меньше любого заметного числа и, следовательно, практически равной нулю, так что площадь под кривой равна 1/4.
Метод Уоллиса для нахождения отношения между треугольником и квадратом в случае, когда имеется четыре линии.
Одним из самых серьезных ученых был англичанин Исаак Барроу (1630-1677), теолог и математик, преподаватель Ньютона на Лукасовской кафедре математики в Кембридже. На его трудах основывались Ньютон и Лейбниц.
Его главным вкладом в математику являются "Лекции по оптике и геометрии" (1669), в которых Барроу изложил свой анализ. Если бы не его чрезмерная увлеченность геометрическими методами, основателем математического анализа мог бы стать он сам. Обзор этой работы дает нам представление об элементах анализа: построение касательных, дифференцирование произведения и частного, дифференцирование степени, спрямление кривых, замена переменной в определенном интеграле и дифференцирование неявных функций. Барроу также осознавал, что вычисление квадратуры и дифференцирование были взаимно обратными операциями, о чем уже говорил шотландский ученый Джеймс Грегори, но тогда никто на это высказывание не обратил внимания. Барроу изложил свои идеи в геометрическом виде и только для некоторых функций.