Лейбниц. Анализ бесконечно малых | страница 49
)/(n+1)
>0
Он сформулировал утверждение, известное как принцип Кавальери: "Если при пересечении двух тел любой плоскостью, параллельной некоторой заданной плоскости, получаются сечения равной площади, то объемы тел равны между собой". На рисунке 1 на следующей странице можно увидеть конкретный случай из двух треугольников с одинаковым основанием и высотой, где неделимые одинаковы, следовательно площадь одна и та же.
Несмотря на критику, которую получил метод Кавальери, многие математики пошли по тому же пути неделимых. Ферма, Торричелли, Паскаль и Роберваль также предложили похожие методы, хотя и заменив линии другими элементами, такими как прямоугольники, треугольники, параллелепипеды или цилиндры.
РИСУНОК 1. Два треугольника с одинаковым основанием и высотой имеют одну и ту же площадь.
РИСУНОК 2. Метод Кавальери для нахождения площади области, ограниченной параболой.
Жиль де Роберваль, один из членов-основателей Парижской академии наук, заменил линии Кавальери бесконечно малыми прямоугольниками. Он чертил ряд прямоугольников одной и той же ширины и предполагал, что площадь под кривой можно приблизить к площади этих прямоугольников, если их ширина достаточно мала. Для нахождения площади под параболой, например, он следовал методу, показанному на рисунке 2. В современной записи речь бы шла о том, чтобы найти
>a
∫x>2 dx .
>0
Возьмем n прямоугольников, расположенных на горизонтальной оси. При этом t означает порядковый номер прямоугольника. Пусть подобный прямоугольник имеет основание е, тогда высотой его будет значение функции параболы, соответствующее абсциссе t • е. Следовательно, его площадь равна е • (t • е)>2. Если сложить все прямоугольники, получится:
А = е -е>2 + е • (2е)>2 + е • (Зе)>2 + ... + е- (ne)>2 =
= е>3 + 4е>3 + 9е>3 +... + n>2 • е>3 = е>3-( 1 + 4 + 9 +... + n>2).
Сумма членов ряда квадратов уже нам известна и равна:
n>3/3+n>2/2+n/6,
и если обозначить через а сумму п значений ширины прямоугольников, то есть a = ne, то:
e = a/n,
и предыдущее выражение превращается в:
A = (a/n)>3(n>3/3+n>2/2+n/6) = a>3(n>3/3n>3+n>2/2n>3+n/6n>3) = a>3(1/3+1/2n+1/6n>2).
Поскольку предполагается, что n — достаточно большое число для оптимального приближения, дробями с n в знаменателе можно пренебречь, ведь значение этих дробей приближается к нулю, и получается, что площадь под параболой равна:
a>3/3.
Были и другие математики, которые настолько близко подошли к определению анализа бесконечно малых, что как бы расстелили ковровую дорожку, по которой Ньютон и Лейбниц вошли в историю. Английский математик Джон Уоллис, королевский криптограф, представил в 1656 году свою главную работу "Арифметика бесконечного", в которой на основе работ Декарта и Кавальери изложил свой метод работы с бесконечно малыми. Уоллис вычислил квадратуру гипербол, то есть кривых, уравнения которых имеют вид: