Лейбниц. Анализ бесконечно малых | страница 36
π/2 = (2 • 2 • 4 • 4 • 6 • 6 • 8 • 8 ...)/(1 • 3 • 3 • 5 • 5 • 7 • 7 • 9 ...)
XVII век был временем популярности сумм бесконечных рядов степеней, которые служили для поиска квадратуры фигур, ограниченных различными типами кривых, то есть площади сегмента какой-либо кривой.
Когда в 1672 году Лейбниц навестил Гюйгенса в Париже, он рассказал ему о методе, над которым работал. Он использовался для нахождения суммы членов бесконечных рядов чисел и состоял в том, чтобы учитывать разность между членами последовательности. Если у нас есть ряд членов a>0<а>1<а>2<а>3<... a>n, то возьмем разности b>1= a>1-a>0; b>2= а>2-а>1; b>3= а>3-а>2; ..., и тогда нулевая сумма а>0-а>0 + а>1 - а>1 + а>2 - а>2 +...+ a>n-1 - a>n-1 + + a>n - a>n = а>0 + b>1 + b>2 +...+ b>n - a>n = 0, откуда следует, что сумма разностей равна:
b>1 + b>2 + b>3 + ... + b>n = a>n - a>0
Лейбниц утверждал, что его метод разностей может быть применен для нахождения суммы любого ряда чисел, построенного в соответствии с правилом, и даже для бесконечных рядов — при условии, что они сходятся.
На той же встрече Гюйгенс задал Лейбницу задачу, которую он сам уже решил, чтобы тот проверил свой метод, — найти сумму чисел, обратных треугольным, то есть следующий ряд:
1 + 1/3 + 1/6 + 1/10 + ...
Лейбниц разделил на два каждый член, разложив дроби на разность двух:
1/2+1/6+1/12+1/20+...+1/2+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/2+1/2 = 1
следовательно, значение искомой суммы членов данного ряда составляет 2(1 + 1).
Также Лейбниц сформулировал то, что известно как теорема сходимости знакочередующихся рядов, то есть рядов, в которых чередуются складываемые и вычитаемые члены. В основном это выражение вида:
>∞
∑(-1)>n • a>n = a>0 - a>1 + a>2 - a>3 + a>4 - ... при a>n ≥ 0.
>n=0
Данный критерий впервые появился в письме, адресованном Иоганну Бернулли (1667-1748) в 1713 году.
Для многих математиков критерии сходимости, которыми они пользовались, были основаны на том, чтобы найти частичные суммы ряда членов, например п членов. Они пытались найти упрощенное выражение, связанное с гг, а затем изучить, что произойдет, если число членов возрастет до бесконечности. Но не все математики были согласны с данным подходом, поскольку появлялись так называемые логические парадоксы, то есть ряды, расходящиеся при одном методе, а при применении других методов — наоборот.
Один из главных парадоксов того времени был связан с нахождением суммы знакочередующегося ряда, в котором an = 1 для любого n. То есть речь идет о ряде: