Искусство мыслить рационально. Шорткаты в математике и в жизни | страница 27
2 ступеньки: 11 или 2.
3 ступеньки: 111 или 12 или 21.
4 ступеньки: 1111 или 112 или 121 или 211 или 22.
5 ступенек: 11111 или 1112 или 1121 или 1211 или 2111 или 122 или 212 или 221.
Последовательность количества вариантов выглядит так: 1, 2, 3, 5, 8… Возможно, вы уже заметили паттерн. Следующее число получается сложением двух предыдущих. Возможно, вы даже знаете, как называются эти числа. Это же числа Фибоначчи! Они названы в честь математика XII века, открывшего, что эти числа – ключ к процессам роста природных объектов. Цветочных лепестков, сосновых шишек, ракушек, популяций кроликов. Все эти числа, по-видимому, следуют одному и тому же паттерну.
Фибоначчи открыл, что процессы роста в природе следуют одному простому алгоритму. Правило сложения двух предыдущих чисел – это шорткат природы к созданию сложных структур, например ракушек, шишек или цветков. Каждый организм использует две последние созданные им вещи в качестве ингредиентов для следующего шага.
Рис. 1.4. Построение спирали при помощи чисел Фибоначчи
Использование паттернов в развитии структур – ключевой шорткат природы. Взять, например, тот способ, которым природа создает вирус. Вирусы обладают чрезвычайно симметричной структурой. Связано это с тем, что алгоритм создания симметричной структуры прост. Если вирус имеет форму симметричного кубика, то ДНК, которая воспроизводит эту молекулу, нужно создать лишь несколько экземпляров одного и того же белка, образующего грани кубика, а затем вся структура вируса может быть построена по тому же правилу. Никакие особые инструкции для разных граней не требуются. Паттерн позволяет строить вирус быстро и рационально, что и делает его таким смертельно опасным.
Но можем ли мы быть уверены, исходя из столь малого количества данных, что секрет подъема по лестнице действительно скрыт в числах Фибоначчи?
На самом деле правило точно объясняет, как вычислить количество вариантов для следующего этапа, лестницы из 6 ступенек. Нужно взять все возможные варианты для четырех ступенек и прибавить в конце по двойному шагу. Или взять все возможные варианты для пяти и прибавить к ним по шагу одинарному. Это дает все возможности для шести ступенек. Получается сочетание двух предыдущих чисел последовательности.
Чтобы получить ответ на исходную головоломку, нужно вычислить десятый член последовательности.
1, 2, 3, 5, 8, 13, 21, 34, 55, 89
Существует 89 разных вариантов. Этот паттерн – шорткат к вычислению количества возможных способов подъема до вершины лестницы. И этот же паттерн позволяет решить эту задачу, даже если ступенек будет 100 или 1000.