Искусство мыслить рационально. Шорткаты в математике и в жизни | страница 26
Эта стратегия кажется перспективной. На следующем этапе можно рассмотреть комбинации с двумя двойными шагами, перемешанными с шестью одинарными. В этом варианте подъем совершается за восемь шагов. Но придется вычислить, сколько существует вариантов выбора, то есть какой из восьми шагов будет двойным. Один двойной шаг можно сделать в восьми разных местах, а второй – в семи оставшихся после первого. Создается впечатление, что число возможных вариантов – 8 × 7. Но тут нужно действовать осторожно, потому что на самом деле мы учли одни и те же варианты дважды. Можно назначить первый двойной шаг на положение № 1, а второй – на положение № 2, а можно сделать наоборот. Результат от этого не изменится. Поэтому суммарное число возможных вариантов равно (8 × 7)/2 = 28. Собственно говоря, у этого числа есть особое математическое название. Оно называется числом сочетаний из 8 по 2 и обозначается следующим образом[20]:
В более общем случае число вариантов выбора двух чисел из N + 1 чисел вычисляется по формуле 1/2 N(N + 1) – той же самой формуле, которую Гаусс использовал для треугольных чисел. Снова то же самое колесо, которое мы уже изобрели! Задачу о выборе двух чисел из N + 1 действительно можно свести к задаче вычисления треугольных чисел. В главе 3 я покажу, каким прекрасным шорткатом к решению одной задачи часто может быть ее преобразование в другую.
Эти инструменты для вычисления количества вариантов выбора, называемые биномиальными коэффициентами, были и в числе тех формул, которые Гаусс и помощник его учителя Бартельс вместе разбирали в своих книгах по алгебре.
Но чтобы решить нашу головоломку, на следующем этапе нужно вычислить, какими способами можно выбрать три места для трех двойных шагов по лестнице из семи возможных. Хотя этот метод кажется разумным и систематическим, нам нужно будет придумывать все новые формулы для включения в подъем по лестнице все большего числа двойных шагов. Эта работа начинает казаться трудоемкой и медленной – совсем не такой, каким должен быть шорткат.
Поэтому я опишу более удобный способ, основанный на том, о чем я рассказывал в этой главе. Очень действенной стратегией для решения таких головоломок мне кажется следующая: нужно рассмотреть малое количество ступенек и выяснить, есть ли в получающихся для них числах какой-нибудь паттерн.
Вот все варианты для лестниц из 1, 2, 3, 4 и 5 ступенек, которые можно быстро перебрать вручную:
1 ступенька: 1.