Геометрия, динамика, вселенная | страница 63
3 сферу S| неправомочно.
Однако вполне оправдана несколько иная операция:
1 выделения некоторой окружности S| и использования ее в
3 дальнейшем для построения сферы S|. Иначе говоря, разбиения
3 1 2 сферы S| на две: S| и S|. В стандартных обозначениях такое
3 1 2 разбиение имеет вид S| = S| + S|. Это произведение двух сфер и есть геометрическая интерпретация электрослабого взаимодействия. Наглядно ее можно попытаться представить как пространство Минковского (Римана), в каждой точке которого в определенном взаимоотношении «прикреплены» окружности и сферы одинакового радиуса.
По аналогии с геометрической интерпретацией электрослабого взаимодействия можно геометрически интерпретировать объединение сильного, слабого и электромагнитного взаимодействия (большое объединение).
Квантовая хромодинамика определяется группой SU(3), соответствующей 3-мерному комплексному пространству (матрица T 3-мерна). Учитывая квантовое условие унитарности (см. выше), размерность соответствующего пространства равна восьми. Эту размерность можно уменьшить до семи, используя свойства проективных пространств, когда одна из размерностей стягивается в точку. В проективной геометрии все точки, координаты которых пропорциональны (отличаются одним и тем же числовым множителем), принимаются за одну точку. Иначе говоря, все точки с координатами bx|, bx|…, bx| (b
1 2 N действительное число, принимающее различные значения) рассматриваются как одна. Это означает, что в рамках проективной геометрии прямая эквивалентна точке, что является отражением принципа двойственности. Поэтому проективное пространство с размерностью N в известном смысле эквивалентно обычному пространству с размерностью N+1, а
2 2 1 1 произведение пространств CP| x S| x S| (CP| — проективное двумерное комплексное пространство, эквивалентное 4-мерному действительному пространству) эквивалентно изотопическим пространствам, отражающим все три взаимодействия: сильное
1 (SU(3)), слабое (SU(2)) и электромагнитное (S|).
Итак, изотопическое пространство большого объединения интерпретируется 7-мерным компактным ограниченным по объему
2 2 1 пространством CP| x S| x S|. Здесь возникает естественный
2 2 1 вопрос, является ли компактный слой CP| x S| x S| единственным геометрическим отображением всех взаимодействий, кроме гравитационного. На этот вопрос следует отрицательный ответ, имеющий два аспекта: геометрический и физический.
Геометрический сводится к тому, что представление трех