Геометрия, динамика, вселенная | страница 50
В этом разделе мы изложим элементарные представления о калибровочной симметрии и ее фундаментальной роли.
Верные нашей схеме, мы рассмотрим простейшую систему, состоящую из двух тел. Первое, тяжелое, определяет систему отсчета, воздействует на второе тело и создает статическое (независящее от времени) поле. Движение второго тела (частицы) определяется этим полем. Движение второго тела (частицы) определяется этим полем. Понятие калибровочной инвариантности основано на постулате существования некоторой неизмеряемой на опыте функции состояния системы, но определяющей это состояние. В частном случае статического электрического поля такой функцией состояния является потенциал FI. Известно, что абсолютное значение FI не определяет никакие физические характеристики системы. Простейшее проявление этого принципа — безопасность прикосновения к одному из двух проводов, по которым протекает ток. Более сложным выводом является утверждение, что энергия системы, или работа, реализуемая при перемещении из точки x| в точку x|, определяется не абсолютными
1 2 значениями потенциалов FI(x|) и FI(x|), а исключительно их
1 2 разностью FI(x|) — FI(x|). Следовательно, значение
1 2 потенциала определено с точностью до аддитивной постоянной. Если во всем пространстве (для статической системы) изменить потенциал на одну и ту же величину b, то физическая ситуация останется неизменной.
Этот пример — простейшее и давно известное проявление калибровочной инвариантности. Однако из данного выше общего определения калибровочной инвариантности следует неоднозначность постулируемой функции состояния. Действительно, если функция определяет состояние в точке x, но не измеряется на опыте, то все физические характеристики должны зависеть от производных этой функции или (как в случае статического поля, рассмотренного выше) от разности FI(x|) — FI(x|). В обоих случаях прибавление к функции FI
1 2 величины b
FI' — > FI+b (41)
не меняет физическую ситуацию.
Различают два вида калибровочной инвариантности: 1) величина b=const(x), т. е. постоянна во всем пространстве (в этом случае говорят о глобальной калибровочной инвариантности); b=b(x) (этот случай соответствует локальной инвариантности
Мы остановимся в основном на более простом первом случае. Далее мы продемонстрируем простейшее приложение калибровочного принципа — вывод закона Кулона и закона сохранения в электростатике.
Простейшие соображения таковы. Поскольку рассматриваемая система состоит из двух тел, то вектор силы, действующий на пробное тело, должен быть направлен по линии, соединяющей оба тела. Единственный вектор, удовлетворяющий этому условию и калибровочной инвариантности, есть grad TI = d FI / dr. В частности, работа, производимая такими силами, равна интегралу