Теорема века. Мир с точки зрения математики | страница 7



Предположим, что теорема будет справедлива для с = γ; я говорю, что она будет справедлива и для c = γ + 1; пусть, в самом деле,

(а + b) + γ = а + (b + γ);

отсюда следует

[(a + b) + γ] + l = [a + (b + γ)] + l

или в силу определения (1)

(а + b) + (γ + l) = a + (b + γ + 1) = a + [b + (γ + 1)],

а это показывает с помощью ряда чисто аналитических выводов, что теорема верна для γ + 1.

Но так как она верна для с = 1, то последовательно усматриваем, что она верна для с = 2, для с = 3 и т. д.

Коммутативность. 1. Я утверждаю, что

a + 1 = 1 + a.

Теорема, очевидно, справедлива для а = 1 путем чисто аналитических рассуждений можно проверить, что если она справедлива для а = γ, то она будет справедлива для а = γ + 1; но раз она справедлива для а = 1, то она будет справедлива и для а = 2, для а = 3 и т. д.; это выражают, говоря, что высказанное предложение доказано путем рекурренции.

2. Я утверждаю, что

a + b = b + a.

Теорема только что была доказана для b = 1; можно аналитически проверить, что если она справедлива для b = β, то она будет справедлива для b = β + 1.

Таким образом, предложение доказано путем рекурренции.

Определение умножения. Мы определим умножение при помощи равенств

a × 1 = a

a × b = [a × (b − 1)] + a. (2)

Равенство (2), как и равенство (1), заключает в себе бесчисленное множество определений; после того как дано определение а × 1, оно позволяет определить по следовательно а × 2, а × 3 и т. д.

Свойства умножения. Дистрибутивность. Я утверждаю, что

(а + b) × с = (а × с) + (b × с).

Мы проверяем аналитически справедливость этого равенства для с = 1; а потом проверяем, что если теорема справедлива для с = γ, то она будет справедлива и для с = γ + 1.

Предложение опять доказано рекурренцией.

Коммутативность. 1. Я утверждаю, что

a × 1 = 1 × a.

Теорема очевидна для а = 1.

Проверяем аналитически, что если она справедлива для а = α, то она будет справедлива и для а = α + 1.

2. Я утверждаю, что

a × b = b × a.

Теорема только что была доказана для b = 1. Аналитически проверяем, что если она справедлива для b = β, то она будет справедлива и для b = β + 1.

IV

Здесь я прерываю этот монотонный ряд рассуждений. Но именно эта монотонность и способствовала лучшему выделению того однообразного процесса, который мы находим на каждом шагу.

Этот процесс есть доказательство путем рекурренции. Сначала формулируется теорема для n = 1; потом доказывается, что если она справедлива для n − 1, то она справедлива и для