Правила счета элементов бесконечного множества | страница 35
Как видим, пределы существуют для любого значения проецирующей линии, угла проецирования. Поскольку вычисление предела функции неочевидно, приведём геометрический способ его вычисления для частного значения угла, рассмотренного на рис.3, значение которого определяется из геометрических соображений и равно 45>о. Увеличим до бесконечности масштаб фрагмента рисунка в точке пересечения проецирующей прямой и окружности:
Рис.5. Увеличенный фрагмент рисунка 3
На рисунке угол φ =45>о, а угол α→0. Как видим на рисунке, фрагмент проецируемой окружности выглядит вертикальной прямой, а две проецирующие прямые – параллельны. Следовательно, отрезки b – на окружности и параллельный проецирующей плоскости оказываются перпендикулярными и образуют равносторонний прямоугольный треугольник. Отсюда и следует значение предела lim = 0,5 в третьей строке таблицы пределов и в выражении (9). Очевидно, что геометрическое вычисление предела несложно сделать и для других углов проецирующего луча. Напротив, определить это значение аналитически, вычислением предела выражения:
довольно сложно. Подставим значение угла φ
Как видим, под знаком предела находится разность двух бесконечно больших величин, причем это не просто равномощные бесконечности, они тождественны. Действительно, в пределе α→0 мы имеем:
Что и можно записать как тождество
Это довольно интересное обстоятельство: две бесконечности равны, однако, тем не менее, дают разность 2. В общем-то, это свойство не уникально. Его легко показать на другом примере: n +2 = n, если n→∞. Здесь также две равные бесконечности, но при вычитании одной из другой мы получаем конечное число. Значение предела (10) нам известно, он равен 2, то есть при α→0 мы имеем
Получается, что тангенс в знаменателе, меньший единицы на бесконечно малую величину, вносит в значение бесконечно большой величины весьма существенный вклад, увеличивая её ровно на 2. Прямое вычисление выражения (10) в приложении Excel при уменьшении угла α до величины 10>–9 дало устойчивое стремление значения предела к 2 с погрешностью 10>–8. Дальнейшее уменьшение угла не имеет смысла ввиду ограниченной точности вычисления функций приложением.
Таким образом, можно достаточно уверенно заявить, что стереографическое проецирование, преобразование фактически отождествляет точку и линию. И только единственная – вертикальная – проекция отождествляет точку на сфере с точкой на плоскости – это точка их касания. Верхняя точка, полюс проецируется фактически в линию бесконечной длины.