Правила счета элементов бесконечного множества | страница 11



Например, под номером 12345678 будет записано действительное число 0,87654321, а инверсией последовательных натуральных чисел 996, 997, 998, 999, 1000 будет создан фрагмент последовательности действительных чисел:



Такая инверсная запись дробной части чисел, меньших единицы, позволяет записать всю их непрерывную, бесконечную последовательность. Инверсная запись, "задом наперед" используется для того, чтобы при возрастании номера сохранялись значащие нули, поскольку при обычной записи будут пропущены, например, действительные числа, имеющие нули сразу после запятой. Очевидно, что бесконечная последовательность содержит все без исключения действительные числа, меньшие нуля, в частности, полную дробную часть чисел π (3,14159…), числа Эйлера – е (2,71828…), основания натуральных логарифмов, константу пропорциональности Ландау – Рамануджана С (0,76422…) и постоянную тонкой структуры . Для удобства эти дробные числа с нулевой целой частью можно представить, например, записью следующего вида:



где индекс 0 означает, что все числа этого множества не превышают единицы, то есть, перед запятой у них записан 0, а n со стрелкой влево над ним – это обычное натуральное число, записанное после запятой в обратном порядке, "задом наперед", как дробная часть этого элемента множества. Очевидно, это число n является порядковым номером соответствующего элемента множества M>0, точки линии.

Теперь возьмем отрезок, линию [0,1] и отождествим каждую точку этой линии с полученной числовой последовательностью (3). Очевидно, что каждая точка отрезка будет единственно отождествлена с единственным числом последовательности, парно. Ни одна точка или число не будут пропущены. Какое бы число мы ни взяли, на линии обязательно будет точка с таким же значением. Наоборот, какую бы мы не взяли точку на линии, этот номер обязательно будет в созданном массиве. Иначе говоря, рассмотренный отрезок числовой прямой [0, 1], континуум оказывается в биективном соответствии со всеми числами созданного множества.

Собственно процесс нумерации элементов массива или точек линии также достаточно очевиден. В этом процессе, как можно обнаружить, точки, элементы линии, числа сформированного ряда, матрицы оказываются расположенными не в виде монотонной последовательности, а "вперемешку".



Рис.2. Нумерация точек отрезка


На рисунке показан фрагмент последовательной нумерации точек, начиная с точки 0,5 и заканчивая на точке 0,31. Мы последовательно рассматриваем фрагмент, точки с натуральными порядковыми номерами 5, 6, 7, 8, 9, 10, 11, 12, 13, по которым из выражения (3) определяем значения этих точек: 0,5 (точка номер 5); 0,6 (точка номер 6); 0,7 (точка номер 7 и так далее); 0,8; 0,9; 0,01 (точка номер 10); 0,11; 0,21; 0,31 (точка номер 13). Как видим, порядковые