О неслышимых звуках | страница 12



Попеременно сжимая и растягивая пластинку, мы вызовем появление на ее противоположных гранях разноименных зарядов, знаки которых будут меняться соответственно с изменениями формы пластинки.

Этим не ограничиваются замечательные свойства кварцевой пластинки. Оказывается, что если ее противоположные грани заряжать разноименным электричеством, то в такт изменениям знаков зарядов меняется и форма пластинки: пластинка делается то толще, то тоньше.

Поместим пластинку в газ или жидкость. При утолщении пластинки грани ее, двигаясь наподобие поршня в цилиндре паровой машины, подожмут вещество, в которое она погружена. При сжатии же пластинки, наоборот, вблизи ее поверхности образуется разрежение. Повторяющиеся изменения формы пластинки вызовут в окружающем ее веществе возникновение чередующихся сжатий и разрежений. Сжатия и разрежения, распространяясь в пространстве, и создадут волну. Пластинка явится источником волн — излучателем (рис. 7).


>Рис. 7. Пьезоэлектрический излучатель

Изменения формы пластинки можно производить с любой частотой, для этого достаточно с соответствующей скоростью изменять знаки электрических зарядов на ее гранях.

Известный советский физик Сергей Яковлевич Соколов заставил кварцевую пластинку совершать миллиарды колебаний в секунду, однако и это не является пределом.

Надо помнить, что изменение размеров кварцевой пластинки очень невелико. Если к кварцевой пластинке, подвести электрическое напряжение, скажем, в 1000 вольт, то толщина пластинки увеличится или уменьшится лишь на 2 десятимиллионные части сантиметра; это расстояние ничтожно мало, на нем могло бы уложиться всего 10–15 атомов.

Но можно увеличить размах колебаний пластинки.

Проделаем такой опыт: привязав к нитке небольшую гирьку, заставим ее совершать колебания. По секундной стрелке часов заметим тот момент, когда гиря пройдет через положение равновесия, и, отсчитав 20 качаний, узнаем, сколько для этого требуется времени. Затем, толкнув гирю посильнее, увеличим размах ее колебаний. Окажется, что и при большем размахе для 20 колебаний потребуется ровно столько же времени. В нашем опыте гирька совершала свободные колебания, и мы убедились, что частота свободных, или, как говорят, собственных, колебаний тела не зависит от размаха, или, что то же, от амплитуды колебаний.

Но от чего же зависит частота собственных колебаний?

Достаточно укоротить или удлинить нить, на которой висит гиря, как частота собственных колебаний гирьки изменится. Чем короче подвес, тем больше будет частота колебаний.