Белые карлики. Будущее Вселенной | страница 102



Есть, однако, и другие вселенные, тоже порожденные весьма креативным, как сейчас принято говорить, использованием уравнений ОТО. Они куда меньше соответствуют (или не соответствуют вовсе) результатам астрономических и астрофизических наблюдений, но нередко весьма красивы, а подчас и элегантно парадоксальны. А поскольку они возникли на основе интеллектуальных ресурсов Астрофизической революции, имеет смысл вспомнить и об этих воображаемых мирах. Правда, математики и астрономы напридумывали их в таких количествах, что нам придется ограничиться лишь несколькими примерами.

КАЗНЕРОВСКИЙ ЭЛЛИПСОИД

После появления в 1917 г. основополагающих работ Эйнштейна и де Ситтера многие ученые стали пользоваться уравнениями ОТО для создания космологических моделей. Одним из первых это сделал нью-йоркский математик Эдвард Казнер, опубликовавший свое решение в 1921 г.

Его вселенная очень необычна. Начать с того, что в ней нет не только гравитирующей материи, но и антигравитирующего поля (другими словами, там отсутствует эйнштейновский космологический параметр). Казалось бы, в этом идеально пустом мире вообще ничего не может происходить. Однако Казнер допустил, что его гипотетическая вселенная неодинаково эволюционирует в разных направлениях. Она расширяется вдоль двух координатных осей, но сужается вдоль третьей оси. Посему это пространство очевидным образом анизотропно и по геометрическим очертаниям похоже на эллипсоид. Поскольку такой эллипсоид растягивается в двух направлениях и стягивается вдоль третьего, он постепенно превращается в плоский блин. При этом казнеровская вселенная отнюдь не худеет, ее объем увеличивается пропорционально возрасту. В начальный момент этот возраст равен нулю — и следовательно, объем тоже нулевой. Однако вселенные Казнера рождаются не из точечной сингулярности, как мир Леметра, а из чего-то вроде бесконечно тонкой спицы — ее начальный радиус равен бесконечности вдоль одной оси и нулю вдоль двух других.

В чем секрет эволюции этого пустого мира? Поскольку его пространство по-разному «сдвигается» вдоль разных направлений, возникают гравитационные приливные силы, которые и определяют его динамику. Казалось бы, от них можно избавиться, если уравнять скорости расширения по всем трем осям и тем самым ликвидировать анизотропность, однако математика подобной вольности не допускает. Правда, можно положить две из трех скоростей равными нулю (иначе говоря, зафиксировать размеры вселенной по двум координатным осям). В этом случае казнеровский мир будет расти лишь в одном направлении, причем строго пропорционально времени — это легко понять, поскольку именно так обязан увеличиваться его объем, но это и все, чего мы можем добиться.