Белые карлики. Будущее Вселенной | страница 101
Открытие ускоряющегося расширения Вселенной считают великим достижением астрофизики XX в., научная значимость которого следует за открытием расширения Вселенной. Оно не только устранило прежние трудности, но и поставило новые задачи фундаментальной важности. Нынешняя плотность темной энергии по порядку величины совпадает с плотностью барионной и темной материи. Большинство физиков полагает, что темную энергию порождают квантовые флуктуации вакуума, которые вносят в нее и положительный, и отрицательный вклад. Согласно приблизительным оценкам, и те и другие должны давать гигантские плотности темной энергии, примерно 10>118 ГэВ/см>3. Но ее реальная величина неизмеримо меньше — на 123 порядка! Выходит, что разность двух исполинских чисел лишь чуть-чуть отличается от нуля, что выглядит весьма странным. По мнению Виленкина, не исключено, что это игра случая. Возможно, что в других областях космоса такие флуктуации дали совсем иные значения плотности темной энергии, обернувшиеся либо быстрым расширением пространства, либо катастрофическим сжатием. В обоих случаях там не могли возникнуть галактики, звезды, планеты и тем более живые существа. Поэтому наблюдаемое значение плотности темной энергии, возможно, не имеет другого объяснения, кроме того аргумента, что при великом множестве прочих раскладов некому было бы его измерять.
Некоторые ученые (впрочем, они в меньшинстве) полагают, что плотность темной энергии не только не постоянна, но в будущем может довольно быстро расти. В этом случае Вселенная обречена на Большой разрыв, о котором говорилось в конце раздела о белых карликах. Но даже сторонники этой идеи не сомневаются, что в ближайшие несколько миллиардов лет Вселенная будет расширяться приблизительно нынешними темпами. На этом оптимистическом прогнозе можно и закончить.
31. Вселенные-экзоты
В главе о темной энергии были перечислены космологические модели, созданные на базе ОТО, дополненной гипотезой об однородности и изотропности космического пространства. Это замкнутая вселенная Эйнштейна с постоянной положительной кривизной пространства, которая приобретает статичность благодаря введению в уравнения ОТО так называемого космологического параметра (его еще называют космологическим членом), действующего как антигравитационное поле; расширяющаяся с ускорением вселенная де Ситтера с неискривленным пространством, в которой нет обычной материи, но тоже заполненной антигравитирующим полем; закрытая и открытая вселенные Александра Фридмана; пограничный с этими вселенными мир Эйнштейна — де Ситтера, который с течением времени постепенно снижает скорость расширения до нуля; и наконец, растущая из сверхкомпактного начального состояния вселенная Леметра, прародительница космологии Большого взрыва. Все они, и особенно леметровская модель, стали предшественницами современной Стандартной модели нашей Вселенной.