Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности | страница 25



. Как высказался об этом Кейнс, нам необходимо «посвятить свои мысленные усилия предвосхищению того, каким, по ожиданиям среднестатистического мнения, окажется это самое среднестатистическое мнение». Естественно, мы можем перейти на следующий уровень, и так далее.

Конечно же Кейнс говорил не о фотографиях, а об игре на фондовой бирже, где, как он считал, все поступали примерно так же. В конце концов, если мы намерены купить акции потому, что считаем, будто они хороши, – это подход далеко не лучший. Мудрее держать деньги под матрасом или на сберегательном счете. Цена акций поднимается не тогда, когда они хороши, а когда многие верят в то, что они хороши, – или когда многие, по мнению многих, верят в то, что эти акции хороши.

Хороший пример – цена акций Amazon. В 2001 г. они стоили дороже, чем акции всех остальных книготорговых фирм Америки, – причем Amazon к тому времени не заработала еще ни доллара. Но почему так было? Просто многие, по мнению многих, верили в то, что компания Amazon будет компанией Amazon.

Приведенная ниже игра – хороший пример идеи Кейнса. Ален Леду многое сделал для того, чтобы популярность обрела именно эта версия, которую он опубликовал во французском журнале Jeux et Stratégie [13] в 1981 г.

«Угадайка» от Алена Леду

В комнате группа людей. Каждого просят загадать число от 0 до 100. После этого устроитель игры находит среднее арифметическое выбранных чисел и умножает его на 0,6. Итог умножения становится целевым числом. И игрок, загадавший число, самое близкое к этому итогу, выигрывает «мерседес» (они тогда продавались с неплохой скидкой).

Какое число выберете? Подумайте немного.

Есть два способа выбора: нормативный и позитивный.

В нормативной версии, которая предполагает, что все игроки разумны и рациональны, следует выбрать ноль. И вот почему. Если предположить, что люди выбирают числа случайным образом, то ожидаемое среднее равняется 50. Значит, чтобы победить, проводим быстрый расчет: 50×0,6=30 – выбор, кажется, ясен! Но постойте! Что, если каждый это поймет? Тогда средним будет 30. Получается, нужно выбрать 18? (30×0,6=18.) А если все прознают и об этом? Тогда средним будет 18, а нам нужно выбрать 10,8. (18×0,6=10,8.) Конечно же на этом история не кончается, и, если мы продолжим в том же духе, мы в конце концов дойдем до ноля.

Стратегия выбора ноля – это равновесие Нэша (с этой мегазнаменитой концепцией мы встретимся в следующей главе), и вот в чем заключается ее смысл: как только я понимаю, что все выбрали ноль, мне нет смысла поступать иначе.