Безграничное будущее: нанотехнологическая революция | страница 47



В настоящее время инженеры только начинают использовать алмазы. Пионером технологии применения алмазов при низком давлении является Япония. Японская компания продает динамик с отличной высокочастотной характеристикой — конус динамика усилен легкой, жесткой пленкой алмаза. Алмаз — это необыкновенный материал, который можно получить из дешевых материалов, например, из природного газа. Американские компании только пытаются наверстать упущенное.

Все эти материалы просты. Более крупные структуры обладают свойствами сложнее, это позволяет точнее представить, как молекулярное производство будет использовать материалы.

Что делать, если вы собрали атомы углерода в длинные цепи с боковыми группами, немного похожими на белковую цепь, а затем создали из них большую трехмерную структуру? Если бы цепи были изогнуты так, что не могли плотно упаковываться, они бы свернулись клубком и схлопнулись почти как молекулы жидкости, но сильные связи сохранили бы общую структуру неповрежденной. Растягивание будет выпрямлять цепи, но их колебательные движения будут сворачивать их обратно. Такая структура была сделана: она называется резиновой.

Резина разрывается в основном потому, что ее структура нерегулярна. При растяжении сначала не выдерживает одна цепь, затем другая, потому что все они не натягиваются одновременно, чтобы совместно выдержать силу натяжения. Материал с лучшими свойствами сначала был бы мягким, как резина, но при сильном растягивании оказывался бы прочнее стали. Молекулярное производство может сделать такие вещи.

Природный мир содержит множество хороших материалов — целлюлозу и лигнин в древесине, белки прочнее стали в шелке паука, твердую керамику в песчинках и многое другое. Многие продукты молекулярного производства будут отличаться большой долговечностью как песок. Другие будут разработаны для легкой переработки как дерево. Некоторые из них могут быть предназначены для использования там, где их можно будет потом утилизировать. В последнем случае будут использоваться нанотехнологичные биоразлагаемые материалы. Можно предположить, что почти все продукты от обуви до компьютерных наномашин может быть сделан таким образом, чтобы они могли использоваться в течение длительного времени, а затем довольно быстро распадались бы на молекулы и другие материалы, которые обычно находятся в почве.

Это только намек на то, что молекулярное производство сделает возможным, обеспечивая лучший контроль над структурой твердого вещества. Но самыми впечатляющими достижениями нанотехнологий будут не материалы из сверхпрочных структур, не улучшенная резина, а простые биоразлагаемые материалы: однородные, повторяющиеся структуры, не сильно отличающиеся от обычных материалов. Эти материалы будут «глупыми». Когда их толкают, они сопротивляются или растягиваются и отскакивают назад. Если вы направите на них свет, они передадут его, отразят или поглотят. Но молекулярное производство может сделать гораздо больше. Вместо того чтобы использовать простые молекулы, оно может создавать материалы из триллионов двигателей, храповиков, излучателей света и компьютеров.