Безграничное будущее: нанотехнологическая революция | страница 46



Сегодняшняя технология в основном работает с веществом в нескольких основных формах: газообразной, жидкой и твердой. Хотя каждая форма имеет много разновидностей, все они сравнительно просты.

Газы, как мы видели, состоят из молекул, которые сталкиваются и разлетаются в пространстве. Газ будет давить на стенки сосуда, в котором находится, а если их нет, расширяться без ограничений. Газы могут поставлять определенное сырье для наномашин, а наномашины могут использоваться для удаления загрязняющих веществ из воздуха и превращения их во что-то другое. Газам не хватает структуры, поэтому они останутся простым сырьем.

Жидкости в чем-то похожи на газы, но их молекулы сцепляются вместе, образуя связный сгусток, который не будет расширяться дальше определенного предела. Жидкости — хорошие источники сырья для наномашин, потому что они более плотные и могут переносить широкий спектр топлива и сырья в растворе (труба в зале молекулярной обработки содержала жидкость). Наномашины могут очищать загрязненную воду так же легко, как воздух, удаляя и трансформируя вредные молекулы. Жидкости имеют более сложную структуру, чем газы, но нанотехнологии будут использовать в основном твердые тела.

Твердые тела разнообразны. Твердое масло состоит из молекул более твердых, чем сталь, но молекулы соединяются при помощи более слабых сил молекулярной прилипчивости. Нагревание увеличивает тепловые колебания и заставляет твердую структуру распадаться на капли жидкости. Из маслоподобных материалов получились бы плохие наномашины. Металлы состоят из атомов, удерживаемых вместе более мощными силами, и поэтому они структурно тверже и способны выдерживать более высокие температуры. Однако эти силы не очень согласованы, и поэтому плоскости атомов металла под давлением могут проскальзывать относительно друг друга; вот почему ложки сгибаются, а не ломаются. Эта способность к скольжению делает металлы менее хрупкими и легче формуют нужные формы (при плавлении), но это также ослабляет их. Только самые прочные и твердые, с самой высокой температурой плавления металлы стоит рассматривать как части наномашин.




Рисунок 3. УГЛЕРОД — МЯГКИЙ И ТВЕРДЫЙ


Вверху находится графит — материал, используемый в карандашах, он состоит из атомов углерода. Внизу изображена структура алмаза — это те же атомы углерода, составляющие другую структуру.

Алмаз состоит из атомов углерода, удерживаемых вместе сильными направленными связями, подобно связям вдоль оси белковой цепи. (См. рис. 3) Эти направленные связи затрудняют проскальзывание плоскостей атомов, что делает алмаз (и подобные ему материалы) действительно очень прочными — в десять-сто раз прочнее стали. Но плоскости не могут легко скользить, поэтому, когда материал повреждается, он не сгибается, а ломается. Крошечные трещины могут легко расширяться, заставляя большой объект становиться хрупким. Стекло похожий материал: стеклянные окна не кажутся прочными, — и каждая царапина делает стекло еще менее прочным — но тонкие, совершенные стеклянные волокна широко используются, чтобы сделать композитные материалы прочнее и легче, чем сталь. Нанотехнологии смогут использовать алмаз и подобные прочные материалы, изготовляя небольшие, безупречные волокна и компоненты.