Генеалогия нейронов | страница 18



Нейроны, содержащие норадреналин, наряду с дофаминергическими, имеются в составе гипоталамо-гипофизарной системы: окончания в срединном возвышении и в промежуточной доле гипофиза образованы волокнами, приходящими из медиобазальных отделов гипоталамуса.

Почти все серотонинергические нейроны расположены в срединной области мозгового ствола. Из нейронов этого типа состоят, в частности, дорзальное и медиальное ядра шва продолговатого, среднего мозга и варолиева моста. Кроме того, небольшие скопления таких клеток найдены в каудальной части среднего мозга. Серотонинергические нейроны иннервируют обширные области ЦНС, включающие новую кору, гиппокамп, бледное тело, миндалину, подбугровую область, ствол головного мозга, спинной мозг. В коре наиболее плотно серотонинергические окончания представлены в её фронтальных отделах. В стволе мозга такие окончания имеются в ряде ядер черепномозговых нервов, в частности, в моторных ядрах блуждающего и тройничного нервов. Множество терминалей этого типа расположено в поверхностной части subst. grisea periventricularis, в area pretectalis и вблизи nuc. interpeduncularis. В спинном мозге серотонинергические окончания распределены примерно так же, как норадренергические.


2. 3. 3. Нейроны, имеющие медиаторами аминокислоты


Рассмотренные только что медиаторы, объединяемые названием «биогенные моноамины», — катехоламины и серотонин представляют собой продукты декарбоксилирования замещённых производных двух аминокислот, фенилаланина и триптофана. В других нейронах сами аминокислоты, по всей вероятности, берут на себя функцию медиаторов. В список таких аминокислот обычно включают гамма-аминомасляную, глутаминовую и глицин [90, 138, 139, 339]. В качестве возможных кандидатов в медиаторы называют также аспарагиновую кислоту, таурин и некоторые другие аминокислоты, но мы здесь ограничимся рассмотрением первых трёх веществ.

Нужно признать, что наиболее полные доказательства медиаторной роли гамма-аминомасляной кислоты и глутамата имеются для нейронов беспозвоночных [см. обзоры — 61, 270, 279, 320, а также 237].

Напротив, предположение о медиаторной роли глицина возникло и затем получило подтверждения в процессе изучения синаптической передачи у позвоночных [см. историю вопроса в 339], а у беспозвочных пока неизвестны синапсы, где медиатором был бы глицин.

Вывод о том, что глицин является передатчиком в тормозных окончаниях на спинальных мотонейронах, как будто мало кем оспаривается, так как он подтвержден убедительными экспериментальными данными. При аппликации на мотонейроны глицин полностью воспроизводит эффекты, вызываемые естественным медиатором тормозных окончаний. Действие этого медиатора, как и действие глицина, избирательно блокируется стрихнином. Наконец, распределение глицина в спинном мозге проявляет сходство с распределением интернейронов и, возможно, проприоспинальных волокон [см. 71, 99, 234, 339, а также библиографию к этим работам]. Робертс и Митчелл показали, что если изолированный препарат спинного мозга амфибий проинкубировать с меченым глицином, то можно наблюдать выход глицина в раствор в ответ на раздражение ростральной части препарата. Из ряда испытанных веществ способность высвобождаться при раздражении проявили, кроме глицина, только гамма-аминомасляная, глутаминовая и аспарагиновая кислоты, причём во всех этих случаях высвобождение происходило только в присутствии ионов кальция, т. е. носило характер секреции. Авторы ссылаются ещё на два наблюдения секреции глицина из нервных окончаний спинного мозга, одно из которых сделано на млекопитающих [274]. Добавим, что ткань спинного, а также продолговатого мозга обладает специфичной системой накопления глицина, т. е. извлечения его из внеклеточной среды и переноса через клеточную мембрану против градиента концентрации [234]. Сейчас общепризнанно, что такие системы накопления, или обратного захвата, во многих синапсах служат для освобождения синаптической щели от подействовавшей порции передатчика и для реутилизации его пресинаптическим аксоном [194].