Искусственный интеллект на службе бизнеса | страница 54



Например, у Джошуа Ганса регулярно отклоняют транзакцию при покупке беговых кроссовок – он приобретает их примерно раз в год, обычно в стоковых магазинах и находясь в отпуске. Уже много лет ему приходится звонить в банк для одобрения транзакции.

Кредитные карты чаще всего крадут в торговых центрах, и, как правило, мошенники сразу приобретают одежду и обувь (вещи легко перевести в наличные после возврата в любом магазине сети). И поскольку Джошуа редко покупает одежду и обувь и нечасто посещает торговые центры, банк прогнозирует высокую вероятность кражи кредитки. Это вполне логичное предположение.

Факторы, влияющие на прогноз о том, украдена ли карта, разделяются на общие (вид транзакции, например покупка беговых кроссовок) и частные (в данном случае это возраст и частота покупок). При сочетании факторов алгоритмы, отслеживающие транзакции, усложняются.

ИИ обещает сделать прогнозы гораздо более точными, особенно при наличии одновременно общей и индивидуальной информации. Например, с учетом данных транзакций Джошуа за многие годы прогностическая машина могла бы обнаружить в них закономерности, в том числе ежегодную покупку кроссовок примерно в одно и то же время. И считать эту покупку обычной для конкретного человека, а не классифицировать как подозрительную. Прогностической машине стоило бы учитывать и другие вещи, например, сколько времени потребуется на выбор вещей и покупку, если произошли две транзакции подряд в разных магазинах. Когда прогноз мошеннических транзакций станет точнее, банки смогут с большей уверенностью отклонять их, в некоторых случаях даже не связываясь с клиентом. И это время не за горами. Последняя покупка беговых кроссовок в стоковом магазине прошла у Джошуа без осложнений.

Пока прогностические машины еще совершенствуются в прогнозировании мошенничества, банкам приходится вычислять цену ошибки, что требует суждения. Предположим, что прогноз не идеален и вероятность ошибки равна 10 %. Тогда если компания отклонит транзакцию, то будет права в 90 % случаев и сэкономит издержки по возмещению неавторизованной транзакции. Но существует 10 % вероятности отклонения правомерной транзакции, и в таком случае компания получает недовольного клиента. Для выбора правильных действий необходимо сопоставить издержки по выявлению мошенничества с издержками, связанными с разочарованием клиента. У банков готового ответа на этот вопрос нет. Им следует все взвешивать: это и есть суждение.