Эволюционная патология | страница 21



>Рис. 5. Образование через гомологичную рекомбинацию химерных LTR в HERV-K6p21

>LTR заново интегрировавшихся HERV-K элементов показаны серым цветом (по Hughes J. F. и Coffin J. M., 2005).


В эволюции шимпанзе и людей участвовали разные эндогенные вирусы и с разными сценариями активности. P. Jern et al. (2006) нашли различия в недавней (т. е. имевшей место в ближайшие 5 млн лет) активности бета-подобных и гамма-подобных эндогенных ретровирусов в геномах этих видов приматов. Две большие группы гамма-подобных эндогенных ретровирусов (PtG1 и PtG2) поддерживались в геноме шимпанзе и отсутствовали у людей; PtG последовательности были наиболее сходны с двумя ERV бабуинов, но не с ретровирусами данного типа других шимпанзе или людей. Сама же гамма-ретровирусная интеграционная активность была разделена во времени от бета-ретровирусной (табл. 4).

>Таблица 4. Свойства эндогенных ретровирусов, недавно интегрировавшихся с геномом людей и шимпанзе[6]

>- | Человек | Шимпанзе |

>Выявленный элемент | β | γ | β | γ |

ERV | 12 | 12 | 1 | 35

gag*[7] | 12 | 10 | 1 | 18

pro* | 12 | 4 | 1 | 27

pol* | 12 | 11 | 1 | 27

env* | 12 | 2 | 1 | 22

«LTR-gag-pro-pol-env-LTR» | 12 | 1 | 1 | 1



Для исследователей роли ретроэлементов в эволюции человека должно представлять интерес и обнаружение D. J. Hedges et al. (2004) разных сценариев эволюционной активности Alu-элементов, также начавших свой отсчет после дивергенции видов H. sapiens и P. troglodytes (см. «Эволюционная роль Alu-элементов»). Еще более любопытные результаты дает сравнительный анализ экспрессии эндогенных ретровирусов в различных тканях разных видов приматов. Например, анализ 215 образцов РНК, полученных из мозга людей, показал явную специфичность экспрессионного профиля HERV разных семейств и классов (Frank O. et al., 2005).

Недавние эксперименты позволили установить, что фундаментальные биологические различия между видами приматов являются следствием не столько вариаций в их генах, сколько результатом различий в экспрессии и регуляции одних и тех же генов (эволюция по типу анагенеза). Например, исследования, основанные на микроанализе ДНК, показывают, что экспрессия сложных генов человеческого мозга значительно превышает их же экспрессию у нечеловекообразных приматов.

Но ткани, иные чем мозг, у этих же приматов не показывают значительных различий в экспрессии генов (Stengel A. et al., 2006). А. Stengel et al. (2006) сообщили о собственных экспериментах по оценке экспрессии генов HERV в различных тканях приматов разных видов. Ими установлено, что большинство анализируемых HERV активно экспрессировались в тканях мозга человека, но оказывались либо полностью неактивными в аналогичных тканях обезьян Старого Света, либо их экспрессия была незначительной. Данные, полученные O. Frank et al. (2005) и А. Stengel et al. (2006), интересно сопоставить с более ранними наблюдениями палеоантропологов по эволюции мозга человекообразных приматов, обобщенных в работе С. Оппенгеймера (2004). Его собственные объяснения эволюции человека сводятся к необходимости приспособления приматов к внешним факторам, среди которых он на первое место ставит похолодание климата Земли, начавшееся 7–8 млн лет назад. И в качестве адаптивного признака к холоду антрополог Оппенгеймер почему-то видит увеличение объема мозга человекообразных приматов, а не увеличение длины их шерсти или толщины костей черепа. Проанализируем собранные им данные применительно к вышеуказанным работам и к результатам исследования дивергенции видов приматов, полученных другими авторами (см. рис. 4).