Математика на ходу | страница 49



88. Напрямик

Учимся ходить кратчайшим путем

Способствует изучению свойств треугольников, развитию измерительных и оценочных навыков.



Если есть маршрут, по которому вы с ребенком регулярно ходите – например от дома до школы или до магазина, – попробуйте вместе поискать кратчайший путь. Дорога, предполагающая переход на противоположную сторону улицы, – это просто подарок судьбы, тогда преимущества будут особенно наглядными.

Что быстрее: двигаться без затей вдоль гигантской буквы Г или сновать как челнок, мелкими перебежками вправо-влево, срезая углы? Ответ на этот вопрос могут дать только тщательные измерения. Для этого придется посчитать шаги, но надо стараться, чтобы длина шага была одной и той же. Подсчет доверьте шагомеру или установите на свой смартфон специальное приложение (хотя точность может вызывать сомнения).



Если улица, которую надо переходить, спокойная, попробуйте пересечь ее по диагонали, как показано на рисунке. Посмотрите, насколько пунктирная линия короче сплошной!

Раз выгода движения по диагонали стала очевидной, постарайтесь найти кратчайшую диагональ. (Подсказка: лучший способ срезать путь через поле, двор или площадь – это движение по биссектрисе, путь получится короче на треть.)

Это занятие непременно понравится вашему ребенку и исподволь введет его в мир прямоугольных треугольников и теоремы Пифагора, который ему предстоит изучить вдоль и поперек, когда он станет постарше.

89. Прыг-скок + прыг-скок

К вопросу о поведении падающего мяча

Способствует восприятию времени, усвоению причинно-следственных связей, развивает вероятностное прогнозирование.



Если на прогулку в парке вы взяли с собой мяч, можно понаблюдать за тем, как он скачет. Бросьте мяч и посчитайте, сколько раз он подпрыгнет, прежде чем остановится.

Вот несколько вопросов, над которыми интересно поразмышлять вместе с ребенком:

• Как заставить мяч прыгать дольше?

• Что будет, если подбросить его повыше?

• Что будет, если ударить его о землю с большей силой?

• Если у вас с собой два мяча, какой из них перестанет скакать и остановится первым?

• Когда мяч скачет, как он это делает? Должен ли обязательно существовать зазор между мячом и землей?


Любопытнее всего последить за временными промежутками между отскоками. Они становятся все короче и короче. Может, потому что мяч начинает прыгать все быстрее и быстрее и под конец настолько быстро, запредельно быстро, что… останавливается?

90. Пара-пара-парабола!