Популярная аэрономия | страница 90



Каждая частица (атом или молекула) имеет свой особый спектр поглощения (или излучения), свой "оптический паспорт". Нужно только найти характерные черты этого спектра и произвести измерения в соответствующем интервале длин волн. Эти черты были найдены в виде так называемых γ-полос N0 в ближней ультрафиолетовой части спектра (1800 - 2100 Å). Если аккуратно измерить поглощение атмосферы на различных высотах в указанном интервале длин волн (скажем, с помощью фотометра, поднятого на ракете), то его можно пересчитать в концентрации N0, поскольку именно окись азота служит основным поглощающим агентом в этом интервале λ. Такова идея оптического метода. Но, как обычно, между идеей и ее воплощением стоят серьезные трудности. Они связаны в основном с двумя факторами - калибровкой фотометра и учетом фона рассеянного света, т. е. паразитного сигнала, вызванного излучением, попавшим в прибор помимо поглощающего слоя N0.

Эти экспериментальные трудности и приводят к тому, что к каждому конкретному измерению концентрации N0 приходится относиться с определенной осторожностью. До самого недавнего времени считалось также, что именно с этим связаны в большинстве случаев различия в результатах измерений. Мы вернемся к этому в дальнейшем.

В 1959 году группа японских исследователей опубликовала первые экспериментальные оценки количества N0 в верхней атмосфере. Они использовали весь интервал спектра 1800 - 2100 Å и измеряли суммарную концентрацию окиси азота в столбе атмосферы высотой около 25 км. Эти оценки совпали с теоретическими оценками того времени.

Благополучие это, однако, длилось лет пять. В 1964 году американский ученый Барт опубликовал результаты более тщательных измерений концентраций NO тем же методом. Однако он использовал поглощение в отдельных, более узких полосах и уделил большее внимание вопросу фона рассеянного излучения. Измерения Барта поколебали казавшееся прочным здание фотохимической теории. Согласно его измерениям, количество NO на высотах 75 - 100 км составляет 4×107 см-3, что в 40 раз выше верхнего предела, данного в японской работе. Ситуация резко изменилась. Во-первых, обнаружилось существенное различие между теорией и экспериментом. Во-вторых, стало ясно, что окись азота может играть роль в поддержании ионизации в области D. Как развивалась вторая сторона проблемы, мы уже видели в предыдущей главе. Ну а конфликт между теорией и экспериментом?

Вслед за Бейтсом и Николе многие ученые пытались строить теоретические модели распределения NO на базе схемы фотохимических превращений. И все модели с небольшими вариациями приводили к малым значениям [NO] ниже 100 км, лежащим в пределах 105 - 106 молекул на кубический сантиметр. Надо было искать дополнительный источник окиси азота. Где же его искать? Все варианты комбинаций между N, О и окислами азота в классической схеме тщательно рассмотрены. Требовалась какая-то принципиально новая идея. И такая идея появилась. Ее высказали американские ученые Хантен и МакЭлрой. Что, предположили они, если участвующая в реакции (41) молекула кислорода будет находиться не в обычном, основном, состоянии, а в возбужденном? Скажем, в состоянии О2(1Δg)-наиболее распространенном состоянии возбуждения O2 в верхней атмосфере. Как будет тогда протекать реакция? Есть все основания полагать, что эффективность процесса (41) должна быть на несколько порядков выше, чем в случае невозбужденного кислорода. Но вот на сколько? Покроет ли этот выигрыш в эффективности реакции дефицит в количестве исходных продуктов - ведь возбужденных молекул О2(1Δg) много меньше, чем невозбужденных? Стали считать. Концентрации О2(1Δg) в атмосфере известны (мы поговорим подробнее о возбужденных частицах в конце главы). Значит, можно легко оценить, какая константа скорости реакции