Популярная аэрономия | страница 89



Формула 41

а одним (и весьма важным) из путей гибели - реакция соединения с N

Формула 42

Значит, N и N0 оказываются тесно связанными. Мы рассматриваем здесь только процессы с участием нейтральных частиц. А когда к делу подключатся еще и заряженные частицы, связь между окисью азота и атомным азотом становится еще более тесной и сложной. Мораль проста: невозможно всерьез обсуждать отдельно фотохимию N и N0, приходится говорить о всем цикле процессов с участием азота и его окислов. В этом-то и состоит основная трудность проблемы N0. Решение этой проблемы исторически идет по пути своего рода соревнования между измерениями количества окиси азота и усовершенствованием теории указанного цикла процессов.

Первыми рассмотрели схему реакций с участием N и N0 классики аэрономии англичанин Бейтс и бельгиец Николе. Они получили, что в области D концентрации окиси азота относительно малы и не превосходят 106 молекул на кубический сантиметр. Такой вывод был очень важен, поскольку он показывал, что N0 не может играть существенной роли в образовании области D, Это привело к проблеме дополнительного источника ионизации, описанной в предыдущей главе. Но был ли такой вывод правильным?

Поначалу казалось, что это так. Первое экспериментальное определение количества N0, сделанное японскими учеными, подтвердило выводы теории: количество окиси азота ниже 85 км не превышает 106 см-3.

Здесь следует сделать небольшое отступление - сказать о трудностях измерения N0 в верхней атмосфере. Мы знаем, что основной метод исследования состава атмосферы - масс-спектрометрический. Но окись азота, как бы много внимания ей ни уделяли ученые, является малой составляющей атмосферы. Это означает, что ее концентрации на несколько порядков меньше концентраций основных составляющих атмосферного газа - молекулярного азота и кислорода. Например, на высотах области D, о которых пока в основном ведется наш рассказ, на одну молекулу N0 приходится по меньшей мере 106 (миллион!) частиц N2 и О2. Попробуйте из миллиона частиц выловить одну молекулу N0! Масс-спектрометрам пока это еще не под силу. Да и работают масс-спектрометры ниже 100 км, как мы знаем, весьма неохотно и требуют специальных ухищрений в виде откачных устройств, охлаждения и т. д. Значит, масс-спектрометрический путь определения количества N0 не годится. Нужен метод измерения, позволяющий выделять молекулы окиси азота среди большого количества других частиц. Таким методом в принципе является оптический метод.