Убийственные большие данные | страница 121



В процессе автоматической обработки информации, без сомнения, такое могло случиться. Но тут в процесс вмешался человек. При подаче заявки на субсидию Тейлор и ее муж встречались с сотрудницей ведомства по делам недвижимости, чтобы проверить биографии супругов. Эта сотрудница по имени Ванда Тейлор (не родственница Кэтрин или ее мужа) использовала информацию, предоставленную компанией – брокером данных под названием Tenant Tracker. Отчет был полон ошибок и совершенно посторонних персонажей. Например, в нем предполагалось, что настоящее имя Тейлор – не Кэтрин, а Шантель, и что она осужденная преступница, родившаяся в тот же день. Другое подозрение касалось той самой Кэтрин Тейлор, о которой супруги уже слышали, – преступницы, отбывавшей срок в тюрьме в штате Иллинойс за кражу, подлог и хранение запрещенных веществ.

Короче говоря, этот отчет был сплошной путаницей. Но Ванда Тейлор имела опыт в подобных вещах. Она начала пристально изучать информацию и быстро вычеркнула версию с Шантель, которая показалась ей неправдоподобной. Затем она выяснила, что у воровки из Иллинойса была на лодыжке татуировка с именем Трой. Попросив Кэтрин Тейлор показать лодыжки, она вычеркнула и эту версию. К концу встречи всего один добросовестный сотрудник смог удалить всю чепуху, собранную брокером, просто отловившим случайную информацию в интернете. Теперь ведомство по делам недвижимости знало, с какой именно Кэтрин Тейлор оно имеет дело.

Вопрос, на который пока нет ответа, заключается в следующем: а сколько имеется добросовестных сотрудников, готовых исправлять подобные ошибки? Ответ: совершенно недостаточно. Живые люди в экономике данных – это пережитки и исключения. Системы настроены так, чтобы работать с максимальной степенью автоматизации, лишь это эффективно и прибыльно. Ошибки неизбежны, как и в любой статистической программе, но самый простой способ их уменьшить – тоньше настроить алгоритмы, которые управляют машинами. Люди только путаются под ногами.

Эта тенденция к автоматизации лишь ускоряется с развитием компьютеров, которые все лучше и лучше могут разбирать записанную информацию, в некоторых случаях обрабатывая тысячи написанных документов в секунду. Но они все еще неправильно понимают многие вещи. Даже суперкомпьютер Watson, играющий в Jeopardy!, при всем своем великолепии был поставлен в тупик языковым контекстом в десяти процентах случаев. Однажды он решил, что бабочки питаются «кошерно», а в другой раз перепутал Оливера Твиста, персонажа Чарльза Диккенса, и группу