Убийственные большие данные | страница 104



измеряла потоки идей, сама концепция не была безнравственной. Вполне разумно воспользоваться подобным анализом, чтобы идентифицировать знания людей и соединять их с самими многообещающими коллегами и соавторами. IBM и Microsoft используют корпоративные программы именно для этих целей. Эта система очень похожа на алгоритм сайтов знакомств (и зачастую, без сомнения, она выдает столь же посредственные результаты). Большие данные также использовались для изучения продуктивности работников кол-центров.

Несколько лет назад исследователи из MIT проанализировали поведение работников колл-центра Банка Америки и выяснили, почему одни команды оказывались продуктивнее других. Они повесили так называемый социометрический бейдж на шею каждого сотрудника. Электроника в этих бейджах отслеживала место нахождения сотрудника и измеряла через каждые 16 миллисекунд тон их голоса и жесты. Она записывала, когда люди смотрели друг на друга, сколько времени каждый человек говорил, слушал и перебивал других. Четыре команды сотрудников колл-центра – всего 80 человек – носили эти бейджи в течение шести недель.

Работа этих сотрудников была крайне регламентированна. Разговоры друг с другом не поощрялись, потому что работники должны были проводить как можно больше времени на телефоне, решая проблемы клиентов. На перерыв работники могли уходить лишь по одному.

Исследователи, к своему удивлению, обнаружили, что самая быстрая и эффективная команда колл-центра оказалась и самой социальной. Эти сотрудники пренебрегали правилами и общались друг с другом больше остальных. И, когда всем сотрудникам предложили больше общаться, продуктивность колл-центра резко увеличилась.

Однако исследования, которые отслеживают поведение сотрудников, также могут быть использованы для их отбраковки. Когда экономику поразила рецессия 2008 года, сотрудники отделов кадров в техническом секторе взглянули на схемы Cataphora под другим углом. Они заметили, что, в то время как одни сотрудники были помечены большими темными кругами, круги других были меньше и светлее. Если предстояло сокращать сотрудников (а большинство компаний именно так и поступило), то было бы логично начинать как раз с тех кругов, что поменьше.

Были ли эти сотрудники действительно слабым звеном? Мы снова приходим к цифровой френологии. Если система «назначает» сотрудника «плохим генератором идей» или «слабым проводником», это становится ее собственной правдой – и ее результатом.