Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма | страница 74
Мичиганцу Лайаму Хёкстре, мальчику, с которым мы познакомились в начале главы, сейчас, когда я это пишу, девять лет. У него рельефный пресс, и его спина так и бугрится мышцами. Он играет в хоккей, и ему нравится борьба (по словам его отца Нила). И хотя мальчик не очень-то успешно сражается с соперниками на хоккейной площадке, его сила, судя по всему, дает ему явное преимущество на борцовском ринге, где он способен одолевать противников, даже не зная традиционных и общепринятых приемов. По словам отца мальчика, Лайам также может гораздо дальше бросать и отбивать бейсбольный мяч, чем его сверстники. Да и на школьном дворе его мышцы приносят пользу. Нил не без гордости рассказывает, как Лайам недавно «завалил» парня постарше, который приставал к его друзьям.
Врачи пока не сумели выяснить, какая же конкретная мутация вызвала такое усиленное развитие мышц Лайама. Но Суини, Феррелл (анализировавший ДНК мальчика) и многие другие специалисты убеждены, что причина здесь, скорее всего, именно генетическая. Если мутацию все-таки удастся выявить, это может проложить путь к разработке новых методов лечения — или новых методов накачивания для спортсменов, жаждущих побед, и просто для здоровяков, стремящихся увеличить свою мышечную массу.
Пока же для Суини и ряда других исследователей миостатин — в числе самых перспективных веществ, на которые можно оказывать целенаправленное воздействие, разрабатывая методики лечения заболеваний, связанных с атрофией мышц. Сейчас, когда я это пишу, несколько фармацевтических компаний уже проводят клинические испытания так называемых ингибиторов миостатина.
В 2011 г. Суини при помощи миостатиновой мутации вывел золотистого ретривера-«шварценеггера». А в 2015-м китайские ученые объявили, что при помощи технологии CRISPR получили гончих с мышечной массой, вдвое превышающей обычную. Этого удалось добиться, избавив их организм от миостатина посредством генетической модификации. Они сообщили, что намерены выводить собак и с другими мутациями, аналогичными тем, что вызывают человеческие заболевания, например болезнь Паркинсона или мышечную дистрофию.
Суини по-прежнему верит в эффективность IGF-1, но он занимается главным образом ингибированием миостатина, поскольку для этого нужно встраивать в организм меньше вирусных векторов, а значит, меньше вероятность, что организм даст на них нежелательную иммунную реакцию. Впрочем, в дальнейшем ученый еще может вернуться к IGF-1. Смерть Джесси Гелсингера, произошедшая в 1999 г., потрясла институт, где работал Уилсон, и исследователю на пять лет запретили тестировать его методики на испытуемых-людях. Но с тех пор медики нашли новые методы подавления иммунного отклика: в частности, для этого используются другие векторы (некоторые из них открыл сам Уилсон), а кроме того, применяются определенные стероиды: то и другое сдерживает воспалительные процессы на первой — самой важной — стадии лечения. Евросоюз впервые одобрил одну из методик генетической терапии в 2014 г. Сегодня, по некоторым оценкам, одновременно проходят более 2000 испытаний новых генетических методик лечения. Скорее всего, в будущем такие методики станут очень широко применяться для избавления людей от болезней. Пока же Суини и его коллеги пристально следят за этими испытаниями, чтобы определить, какие вирусные векторы наиболее безопасны и насколько далеко мы можем продвигаться по этому пути, не нанося вред пациентам.