Знание-сила, 1998 № 06 (852) | страница 30



№ этих соображений извлекается еще один способ определить число измерении нашего пространства. Сформулируем его так: огородить со всех сторон область N-мерного пространства можно только (N— 1)-мерной «поверхностью». В двумерном пространстве «поверхностью» будет одномерный контур, в одномерном — две нульмерные точки. Это определение придумал в 1913 году голландский математик Брауэр, по известным оно стало только спустя восемь лет, когда его независимо друг от друга, переоткрыли наш Павел Урысон и австриец Карл Менгер.

Здесь наши пути с Лебегом, Брауэром и их коллегами расходятся. Новое определение размерности было нужно им для того, чтобы построить абстрактную математическую теорию пространств любой размерности вплоть до бесконечной. Это — чисто математическая конструкция, игра человеческого ума, который достаточно силен даже для познания таких странных объектов, как бесконечномерное пространство. Математики не пытаются узнать, существуют ли на самом деле вещи, обладающие такой структурой; это не их профессия. Напротив, наш интерес к количеству измерений мира, в котором мы живем, физический: мы хотим узнать, сколько их на самом деле и как почувствовать их число «на своей шкуре». Нам нужны явления, а не чистые идеи.

Характерно, что все приведенные примеры были заимствованы более или менее из архитектуры. Именно эта область деятельности людей теснее всего связана с пространством, как оно представляется нам в обычной жизни. Чтобы продвинуться в поиске измерений физического мира дальше, потребуется выход к другим уровням реальности. Они доступны человеку благодаря современной технологии, а значит — физике.


При чем здесь скорость света?

Ненадолго вернемся к оставленному в камере Штирлицу. Чтобы выбраться из оболочки, надежно отделявшей его от остальной части трехмерного мира, он воспользовался четвертым измерением, которому не страшны двумерные преграды. А именно, он некоторое время подумал и нашел себе подходящее алиби. Иначе говоря, повое загадочное измерение, которым воспользовался Штирлиц, — это время.

Трудно сказать, кто первым заметил аналогию между временем и измерениями пространства. Два века назад об этом уже знали. Жозеф Лагранж, одни из создателей классической механики, науки о движениях тел, сравнил ее с геометрией четырехмерного мира: его сравнение звучит, как цитата из современной книги по Обшей теории относительности.

Ход мысли Лагранжа, впрочем, легко понять. В его время уже были известны графики зависимости переменных величин от времени, вроде нынешних кардиограмм или графиков месячного хода температуры. Такие графики рисуют на двумерной плоскости: вдоль оси ординат откладывают путь, пройденный переменной величиной, а вдоль оси абсцисс — прошедшее время. При этом время действительно становится просто «еще одним» геометрическим измерением. Точно так же можно добавить его и к трехмерному пространству нашего мира.