Знание-сила, 1998 № 06 (852) | страница 29



Математики отличаются от нормальных людей именно тем, что замечают возможность таких абсурдных предположений и умеют делать из них выводы. В нашем случае Лебег рассуждал так: поверхность мостовой, безусловно, двумерна. В то же время на ней неизбежно есть точки, где сходятся по меньшей мере три булыжника. Попробуем обобщить это наблюдение: скажем, что размерность какой-то области равна N, если при ее замощении не удается избежать соприкосновений N + 1 или большего числа «булыжников». Теперь трехмерность пространства подтвердит любой каменщик: ведь при выкладывании толстой, в несколько слоев стены обязательно будут точки, где соприкоснутся не менее чем четыре кирпича!

Однако на первый взгляд кажется, что к лебеговскому определению размерности можно найти, как выражаются математики, «контрпример». Это дощатый пол, в котором половицы соприкасаются ровно по две. Чем не замощение? Поэтому Лебег потребовал еще, чтобы «булыжники», используемые в определении размерности, были маленькими. Это важная идея, и в конце мы вернемся к ней еще раз — в неожиданном ракурсе. А сейчас ясно, что условие малой величины «булыжников» спасает определение Лебега: скажем, короткие паркетины, в отличие от длинных половиц, в некоторых точках обязательно будут соприкасаться по три. Значит, три измерения пространства — это не просто возможность произвольно выбрать в нем какие- то три «разных» направления. Три измерения — это реальное ограничение наших возможностей, которое легко почувствовать, немного поиграв с кубиками или кирпичами.


i. M. К. Эшер. Вид городка Сартене в Италии. 1928год

2. Схема кладки при так называемой полукрестообразной перевязке кирпичной стены. После того как на отмеченное место будет положен кирпич, в точке А станут сходиться пять, а в точке В четыре кирпича.

3. Треугольник Минковского.

4. Способ построения кривой Пето.

5. Побережье южной части Норвегии (размер стороны квадрата решетки — примерно 50 километров).



Размерность пространства глазами Штирлица

Другое ограничение, связанное с трехмерностью пространства, хорошо чувствует узник, запертый в тюремной камере (например, Штирлиц в подвале у Мюллера). Как выглядит эта камера с его точки зрения? Шершавые бетонные стены, плотно запертая стальная дверь — словом, одна двумерная поверхность без щелей и отверстий, огораживающая со всех сторон замкнутое пространство, где он находится. Из такой оболочки деться действительно некуда. А можно ли запереть человека внутри одномерного контура? Представьте, как Мюллер рисует вокруг Штирлица мелом круг на полу и уходит восвояси: это не тянет даже на анекдот.