Занимательно об энергетике | страница 54
Огромный зал Чудовищной величины узлы монтируемой турбины и маленькие фигурки людей, собирающих эту махину.
Современные ТЭС — с чем сравнить эти колоссы? С мамонтом, динозавром?.. Отчего эти железные «звери» энергетики, пожирающие астрономические количества угля и нефти, становятся с каждым годом все крупнее? Оправдывается ли тяга к гигантизму?
У нас в стране в 1913 году единичная мощность турбоагрегата составляла всего лишь 500 киловатт. Через 40 лет на Черепетской ГРЭС был уже пущен турбоагрегат мощностью 150 тысяч киловатт.
А за последние 20 лет единичная мощность турбогенератора возросла с 200 до 1200 мегаватт (1200 тысяч киловатт).
Машины стали столь крупными, что возникла проблема: как перевозить их по железной дороге? Проектировщики вынуждены «вписывать» все более мощные турбогенераторы в практически неизменный объем.
О размерах энергоагрегатов говорят хотя бы следующие цифры. Для размещения уникального энергоблока-гиганта мощностью 1200 тысяч киловатт на Костромской ГРЭС пришлось возвести машинный зал длиной свыше 80 метров и высотой, равной 15-этажному дому!
От ГРЭС не отстают и атомные гиганты. Так, корпус третьего энергоблока Белоярской АЭС взметнулся ввысь на 60 метров!
Что дает гигантизм? Прежде всего более высокие значения КПД.
Вспомним формулу Карно. Поднять температуру пара (Т1) можно, повышая его давление. Но внедрение агрегатов с высокими параметрами пара немыслимо без резкого увеличения их мощности.
В 20-х годах нашего века температура пара не превышала 350 градусов (по Цельсию) при давлении до 15 атмосфер. Сейчас же на современных электростанциях температура пара уже достигает 500—600 градусов, а давление — нескольких сот атмосфер.
Пробиться к более высоким показателям трудно. Мешает «тепловой барьер». При таких громадных давлениях и температурах паропроводящая труба будет нагреваться до свечения.
Нужны особые теплоустойчивые сплавы. Тут не годится даже металл, идущий на двигатели реактивных самолетов и ракет. В этих двигателях он работает при температуре около тысячи градусов всего лишь 100— 200 часов, а в турбинах и котлах электростанций он должен выдерживать 600—700 градусов уже 100 тысяч и более часов!
Итак, энергетические гиганты требуют миллионы тони высокожаропрочных специальных сплавов. Но стоимость материалов, способных сохранить работоспособность в таких трудных условиях — влажность, высокие температуры, высокие скорости вращения — сегодня непомерно велика.