Как работает Вселенная: Введение в современную космологию | страница 41



С учетом этого уравнение (2.29) сводится к

dE = d(εV) = εdV +Vdε = −dA = − pdV, (2.30)

или

Vdε = –(ε + p)dV. (2.31)

Зная баротропное уравнение состояния p = p(ε), мы можем легко найти его решение:

Особенно просто рассмотреть случай весьма популярного среди космологов уравнения состояния

p = wε, w = const. (2.33)

Из формул (2.32), (2.33) и учитывая, что V ~ r3, получаем:

Здесь ρ0 – плотность материи в тот момент, когда сфера имела размер r0 или Вселенная имела масштабный фактор a0. В релятивистской космологии это просто настоящий момент, или «сейчас». Так, плотность материи ρ зависит от ее текущего значения ρ0 и отношения размеров, выраженного через красное смещение z. Случай пылевидной материи без давления соответствует w = 0. Подставляя это значение в уравнение (2.34), мы, как и следовало ожидать, получим уравнение (2.8).

Особый случай w = –1 или p = –ε дает интересный результат. Уравнение (2.31) гарантирует, что в этом случае плотность энергии постоянна. Расширение или сжатие Вселенной не меняет ни плотность энергии ε, ни плотность вещества ρ, ни его давление p. Этот случай описывает космологическую постоянную Λ.

2.8. Современная модификация модели

2.8.1. Космологическая постоянная наносит ответный удар

Решения Фридмана побудили Эйнштейна отказаться не только от теории статической Вселенной, но также и от идеи космологической постоянной, которую он впоследствии называл величайшей ошибкой в своей жизни, согласно воспоминаниям его коллеги – физика Георгия (Джорджа) Гамова[36]. Тем не менее другие ученые, занимающиеся новой наукой о свойствах и эволюции Вселенной в целом – космологией, не спешили отказываться от космологической постоянной. Притом что к существованию Λ-члена космологи относились скептически, они рассматривали модели как без космологической постоянной, так и с ее учетом. Долгое время первый вариант хорошо описывал все астрономические данные, но потом ситуация изменилась. Астрономические наблюдения последних десятилетий подтвердили существование космологической постоянной и позволили измерить ее величину Λ = 1,19×10−52 м−2.

Космологическую постоянную Λ можно рассматривать как некоторый экзотический вид среды с постоянной плотностью энергии εΛ, давлением pΛ и плотностью вещества ρΛ, которые не изменяются в ходе космологического расширения. Причиной такого постоянства является отрицательная работа против отрицательной силы давления, которая сохраняет постоянство плотности энергии Вселенной ε = ρc2. И действительно, давление, создаваемое космологической постоянной, отрицательно и характеризуется значением