Гюйгенс Волновая теория света. В погоне за лучом | страница 12
Благодаря ван Схотену Гюйгенс прекрасно владел математикой, существовавшей до появления математического анализа. Первых успехов он добился в геометрии, в тех ее областях, которые сегодня считаются устаревшими: такие как квадратура — геометрическая игра, состоящая в том, чтобы строить квадраты на основе любых фигур так, чтобы площадь квадрата была равна площади исходной фигуры. При решении задачи можно было пользоваться только линейкой и циркулем, из-за чего построить некоторые квадратуры, например квадратуру круга, было невозможно. Только в XIX веке немецкий математик Фердинанд фон Линдеман доказал невозможность такого построения, но до этого момента лучшие умы посвящали поискам решения огромное количество сил и времени. В возрасте 22 лет Гюйгенс нашел ошибку в одной из самых сложных попыток, предпринятой фламандским иезуитом Грегорио ди Сан Винченцо. Христиан усовершенствовал метод построения квадратур и применил его к коническим сечениям (эллипсам, параболам и гиперболам), а с помощью приблизительной квадратуры круга улучшил метод Архимеда для вычисления цифр после запятой в числе π.
Ван Схотен с энтузиазмом отнесся к работам Гюйгенса и полагал, что их можно поставить в один ряд с трудами древних греков. Он был прав, однако в XVII веке в математике происходила резкая смена вектора, окончательно отделившая ее от древнегреческой науки. Несмотря на то что геометрические открытия Гюйгенса не оставили заметного следа в истории математики, благодаря им он заслужил восхищение современников, а также овладел инструментами, позволявшими понять механизм природы.
Гюйгенс разделял интерес Архимеда к механике. На страницах трудов обоих соседствуют треугольники, весы, параболы и центры притяжения, так что трудно сказать, где заканчивается физика и начинается математика. В нидерландском языке есть слово vernufteling, как нельзя более точно описывающее Гюйгенса. Оно обозначает одновременно отличные интеллектуальные способности и склонность к ручному труду. Ученый не создал грандиозных систем, как Декарт или Ньютон, его больше интересовали отдельные явления, которые он разбирал так, словно имел дело с шестеренками сложного механизма, только вместо гаечных ключей и отверток использовал алгебру и геометрию. Все увлечения Гюйгенса приводили к изобретениям (таким как телескопы и часы), рождавшимся из почти чудесного объединения физики, математики и тонкого ручного труда. Ученый был любопытным примером стремления к чистой абстракции и одновременно с этим — ремесленного прагматизма. Это сочетание очень рано проявилось в его работе в области оптики. Свойства линз со временем стали главным научным интересом Гюйгенса, которому он отдавался на протяжении всей жизни, в итоге усовершенствовав конструкцию телескопа, а также сделав удивительные астрономические открытия. А самое главное — благодаря этому интересу ученый совершил одно из глубочайших исследований природы света. Конец истории имел для Гюйгенса горьковатый привкус: в соперничестве с Ньютоном они находились в разных весовых категориях, но в самом начале научной дуэли, когда Христиан дошел до пределов Солнечной системы, он, без сомнения, одержал победу.