Античная наука | страница 58



, бывший современником и другом Платона, дал первое общее учение об иррациональных величинах (невыразимых как говорили греки).• Прежде всего он показал, что если площадь квадрата выражается целым числом Ν, которое не является второй степенью другого целого числа, то его сторона всегда будет несоизмерима со стороной единичного квадрата. Далее Теэтет распространил доказательство иррациональности на числа типа >3√N(где N не есть третья степень другого целого числа) √N+√M и M+√N (так называемые «биноминали»), √N-√M и √N-M («апотомы») и √√N√M («медиаль»). Изложение результатов Теэтета содержится в X книге «Начал» Евклида.

Обнаружение несоизмеримых отрезков и тем самым открытие иррациональных («невыразимых») величин поставило греческих математиков перед проблемой первостепенной важности. Каков мог быть выход из трудного положения, в котором оказалась математика в результате этого открытия? Одним из возможных был путь, по которому пошла математика Нового времени,— путь обобщения понятия числа и включения в него более широкого класса математических величин — как рациональных, так и иррациональных. При этом греки могли бы начать разработку чисто аналитических методов решения математических задач. Но они к этому еще не были подготовлены (заметим, кстати, что в греческой математике того времени отсутствовало как понятие нуля, так и понятие отрицательных величин). Поэтому греки избрали другой путь — путь геометризации математики. В результате возникла геометрическая алгебра, позволявшая на основе использования наглядных геометрических образов решать чисто алгебраические задачи; о ее характере мы можем судить по II книге Евклида и по произведениям Архимеда и Аполлония. Эта дисциплина, бывшая типичным детищем эллинского духа, начала закладываться во второй половине V в. до н. э.; она основывалась на античной планиметрии, представлявшей собой геометрию циркуля и линейки, и была приспособлена для решения квадратных уравнений и некоторых других классов алгебраических задач. Но ее возможности были ограничены, и в дальнейшем греческая геометрическая алгебра оказалась тормозом, препятствовавшим свободному развитию математической мысли в древности.

В процессе создания геометрической алгебры греческие математики разработали теорию пропорций, - приспособив ее для оперирования с несоизмеримыми отрезками. При этом было сформулировано новое определение пропорциональности, которое оказалось в равной степени применимым как для рациональных, так и для иррациональных величин. Теорией пропорций занимались Гиппас Meтапонтский, Гиппократ Хиосский, Архит Тарентский и другие математики V и начала IV вв. до н. э. Свое завершение теория пропорций нашла в общей теории отношений, разработанной величайшим математиком IV вв. до н. э. Евдоксом Книдским, о котором речь в следующей главе.