Античная наука | страница 58
Обнаружение несоизмеримых отрезков и тем самым открытие иррациональных («невыразимых») величин поставило греческих математиков перед проблемой первостепенной важности. Каков мог быть выход из трудного положения, в котором оказалась математика в результате этого открытия? Одним из возможных был путь, по которому пошла математика Нового времени,— путь обобщения понятия числа и включения в него более широкого класса математических величин — как рациональных, так и иррациональных. При этом греки могли бы начать разработку чисто аналитических методов решения математических задач. Но они к этому еще не были подготовлены (заметим, кстати, что в греческой математике того времени отсутствовало как понятие нуля, так и понятие отрицательных величин). Поэтому греки избрали другой путь — путь геометризации математики. В результате возникла геометрическая алгебра, позволявшая на основе использования наглядных геометрических образов решать чисто алгебраические задачи; о ее характере мы можем судить по II книге Евклида и по произведениям Архимеда и Аполлония. Эта дисциплина, бывшая типичным детищем эллинского духа, начала закладываться во второй половине V в. до н. э.; она основывалась на античной планиметрии, представлявшей собой геометрию циркуля и линейки, и была приспособлена для решения квадратных уравнений и некоторых других классов алгебраических задач. Но ее возможности были ограничены, и в дальнейшем греческая геометрическая алгебра оказалась тормозом, препятствовавшим свободному развитию математической мысли в древности.
В процессе создания геометрической алгебры греческие математики разработали теорию пропорций, - приспособив ее для оперирования с несоизмеримыми отрезками. При этом было сформулировано новое определение пропорциональности, которое оказалось в равной степени применимым как для рациональных, так и для иррациональных величин. Теорией пропорций занимались Гиппас Meтапонтский, Гиппократ Хиосский, Архит Тарентский и другие математики V и начала IV вв. до н. э. Свое завершение теория пропорций нашла в общей теории отношений, разработанной величайшим математиком IV вв. до н. э. Евдоксом Книдским, о котором речь в следующей главе.