Античная наука | страница 57



Далее из натурального ряда были выделены ряды из «треугольных», «квадратных», «пятиугольных» и т. д. чисел. Смысл этих обозначений становится ясным из рис. 2. на котором приведены геометрические построения, дающие получать соответствующие ряды.

Путем аналогичных пространственных построений пифагорейцы получали также «пирамидальные» и т. п. числа.

Дальнейшая разработка делимости целых чисел привела пифагорейцев к идее рациональной дроби. В V в. до н. э. греки научились оперировать, с дробями типа m/n, производя с ними все четыре действия,— с тем ограничением, что вычитать можно было лишь из большего меньшее число (заметим, что египтяне умели производить действия с дробями, но только выражая их в виде дробей типа 1/n). Историки математики предполагают, что к концу V в. до н. э. в Греции уже была построена общая теория делимости, содержавшая в качестве частного случая теорию делимости на 2. Позднее эта теория вошла в состав VII книги Евклида.

Параллельно с арифметикой развивалась также геометрия. Но здесь информация, которой мы располагаем, носит еще более скудный характер. Пифагорейцев прежде всего привлекали свойства фигур (треугольников, квадратов и т. д.), которые могут быть выражены числовыми отношениями. Нетрудно понять, что особый, интерес у них вызвало соотношение между сторонами прямоугольного треугольника, получившее наименование - теоремы Пифагора. Правда, мы не знаем, каким образом и когда было получено доказательство этой теоремы; то доказательство, которое приводится в «Началах» Евклида несомненно имеет более позднее происхождение.

Примерно около середины V в. до н. э. было обнаружено существование несоизмеримых отрезков, т. е. таких, отношение которых друг к другу не может быть выражено не только целым числом, но и любым отношением целых чисел. К их числу принадлежат, например, сторона квадрата и его диагональ. Имеются основания предполагать, что автором открытия был пифагореец Гиппас из Метапонта; с его именем связаны легенды, на которых мы не будем останавливаться. Мы не знаем, каким путем Гиппас пришел к своему открытию; по этому поводу исследователями античной математики выдвигались различные гипотезы.

Открытие несоизмеримости явилось поворотным пунктом в истории греческой математики; по своему значению для того времени оно может быть сопоставлено с открытием неевклидовых геометрий в XIX в. Оно означало крах ранних пифагорейских представлений о том, что соотношения любых величин могут быть выражены через отношения целых чисел. О том резонансе, который вызвало это открытие в образованных кругах греческого общества, свидетельствует ряд мест в сочинениях Платона и Аристотеля, где обсуждаются вопросы несоизмеримости. Вслед за простейшими случаями несоизмеримостей начали изучаться более сложные. Пифагореец Феодор из Кирены (вторая половина V в. до н. э.) показал, что стороны квадратов с площадями 3, 5, 6, 7,..., 17 несоизмеримы со стороной единичного квадрата. А ученик Феодора