Путеводитель для влюбленных в математику | страница 24



. Иными словами, соотношение частот двенадцати нот в равномерно темперированном строе (за исключением начала и конца октавы) не может быть выражено через соотношение целых чисел. Соотношение частот до и соль в таком случае равно не 3:2, а примерно 1,4983 (число принято округлять до 1,5).

Как это звучит? Сейчас почти все музыкальные инструменты настраивают по равномерно темперированному строю, и они ласкают наш слух. Но что мы теряем?

Вот как выглядит звуковая волна для трезвучия до мажор. В первом варианте частоты нот соотносятся как 4:5:6, во втором подобраны в соответствии с равномерно темперированным строем. Первый вариант выглядит (и звучит!) гораздо гармоничнее.



Преимущество равномерно темперированного строя состоит в том, что в нем нет необходимости постоянно перенастраивать музыкальные инструменты. Но есть один инструмент, способный менять тональность мгновенно: человеческий голос.

Вокальные ансамбли без инструментального сопровождения (например, «парикмахерские» квартеты[53]) не нуждаются в равномерно темперированном строе и берут ноты, соотношение частот которых можно выразить целыми числами. И мы слышим чудесные хорошо резонирующие звуки.

Глава 5

i

Еще одна головоломка квадратного корня

В главе 4 мы поразмышляли над «точным» значением числа √2 и пришли к выводу, что его нельзя выразить в виде соотношения двух целых чисел и, следовательно, оно иррационально. Тем не менее мы можем найти его значение с невероятной точностью.

Число √2 не относится к рациональным числам, однако нас не мучает вопрос, существует ли такое число, что x² = 2. Несмотря ни на что, √2 имеет законную прописку где-то между 1,41 и 1,42. Это пример действительного числа[54]. Оно может быть выражено так:

± XXXX, XXXXXXXXXX

Символом X помечены разные цифры. Число может быть положительным или отрицательным (знак + перед числом ставить не принято), количество цифр до запятой конечно, количество цифр после запятой бесконечно. Скажем, 1⅔ можно записать так[55]:

1,666666666666…

Такие числа, как 3/4, в десятичной системе счисления записываются с конечным числом цифр после запятой (0,75), но ничто не мешает прикрутить справа бесконечное количество нулей: 0,7500000000…

Таким образом,

 – реальное число, просто иррациональное. Точнее говоря, существует такое число, что x² = 2. Точно так же существует такое число, что x² = 3, а именно
И так далее… Или нет?

Всякое ли уравнение x² = a имеет решение? Если a – положительное действительное число (или ноль), тогда решение равно