Мыльные пузыри | страница 38




Рис. 47.


С помощью рисунка невозможно дать представление о дивном совершенстве ее формы, но, к счастью, этот опыт относится к числу тех, которые очень легко может произвести каждый.

Стоит упомянуть о любопытном соотношении между винтовой поверхностью и поверхностью катеноида вращения (рис. 47 и 24). И та и другая представляют собой поверхности без кривизны, а потому их можно получить при помощи мыльных пленок. Вам известно, что плоский кусок бумаги можно сгибать, но нельзя растягивать, а потому листу бумаги можно придать форму цилиндра или конуса, причем ни одна часть его не будет растянута. Но его нельзя согнуть так, чтобы получился шар или часть шаровой поверхности, так как при этом средняя часть листа должна была бы растянуться или внешние части сжаться, чему бумага противодействует. Возьмем теперь сделанную из дерева или гипса модель катеноида и будем прикладывать к ее поверхности целый ряд смазанных клейстером полосок тонкой бумаги таким образом, чтобы они перекрещивались и находили одна на другую своими краями. У нас получится катеноид из бумаги, на котором мы обнаружим интересное соотношение. Когда клейстер высохнет, разрежем бумагу ножом вдоль какой- нибудь радиальной плоскости, чтобы можно было снять бумагу с модели. Затем, держа бумагу за два разрезанных конца в месте перехвата, станем ее разводить, закручивая в го же время в разные стороны. Тогда перехват распрямится и станет плоским, а остальная часть бумаги изогнется без какого бы то ни было растягивания в правильную двухлопастную винтовую поверхность.

С помощью проволочных фигур, которым придана форма правильных геометрических тел, можно получить очень красивые образования из мыльных пленок, погружая эти рамки в мыльную воду. В случае трехгранной призмы все эти поверхности плоски, и всегда в одном ребре встречаются лишь три такие плоскости, притом под равными углами (рис. 48).


Рис. 48.


Это и не удивительно, если принять во внимание, что сама проволочная фигура трехсторонняя. Рассматривая эту трехстороннюю фигуру с тремя пленками, встречающимися на центральной линии, вы склонны ожидать, что в случае четырехсторонней или квадратной призмы мы увидим четыре пленки, встречающие одна другую на средней линии. Замечательно, однако, что этого никогда не происходит, какую бы неправильную форму ни имела рамка и какое бы сложное строение ни имел клочок пены. На одном ребре никогда не может встретиться более трех плоскостей, а в одной точке — четырех ребер и шести плоскостей. Кроме того, пленки и ребра должны пересекать друг друга лишь под равными углами. Если случайно на один момент в одном ребре встретятся четыре плоскости или если углы не будут в точности равны друг другу, тогда получится во всяком случае неустойчивая форма; она не может оставаться в покое, и пленки будут все время скользить одна вдоль другой, пока они не придут в положение, при котором условия устойчивости будут выполнены В результате кубическая форма дает фигуру, изображенную на рис. 49, в которой центральный квадрат должен быть параллельным одной из шести граней куба и двенадцать других пленок встречаются одна с другой так, что выполняется основное правило, а именно: все углы равны 120°.