Стратегии решения математических задач | страница 58
Поскольку Аманда, Билл и Кэрол могут выпасть только один раз, ответ
Образцовое решение
Если вы не знакомы с комбинаторными вычислениями, то можете воспользоваться стратегией организации данных. Составим перечень всех возможных сочетаний имен в любом порядке:
Существует 10 возможных вариантов выбора трех человек. Только один из них, а именно ABC, удовлетворяет условиям задачи. Таким образом, правильным ответом будет один из 10, или
Глава 8
Схематичное изображение, или Визуальное представление
Когда вопросы в задаче касаются определенной геометрической фигуры или рисунка, без слов понятно, что построение схем, или визуальное представление, является неотъемлемой частью метода решения. Это необходимо и помогает решить задачу. Довольно трудно представить, чтобы математики в далекие времена оперировали геометрическими понятиями без рисунков или хотя бы демонстрировали свои геометрические расчеты без использования чертежа. Вместе с тем есть множество задач, где условия не предполагают построения чертежа, однако визуализация того, о чем идет речь, намного облегчает поиск решения. Многие люди лучше воспринимают информацию визуально — чтобы понять происходящее, им нужна картина, а не просто слова. Это не домыслы. Визуализация — очень сильный метод, помогающий вникнуть в данную ситуацию.
Например, когда нужно объяснить, как найти чей-то дом, схема направления движения просто неоценима. Рисунок помогает увидеть маршрут в целом. В журналах и газетах постоянно используются графики и другие визуальные инструменты для сравнения или противопоставления ситуаций. Когда вы покупаете что-то и должны собрать это сами, в руководстве производителя помимо письменных инструкций обычно приводятся рисунки. В большинстве видов спорта, особенно в футболе и баскетболе, тренер объясняет стратегию игры, как правило, с помощью диаграмм, или рисунков с крестиками и ноликами. Все это примеры повседневного использования стратегии схематичного изображения, когда напрямую оно не требуется. В конце концов, не зря же говорят, что лучше один раз увидеть, чем 100 раз услышать.
Возьмем для примера математическую задачу, в которой изначально мало кто ожидает использования визуального представления.
У г-на Адамса есть два теста в запасе для выпускного экзамена по алгебре, которые он хочет использовать в двух классах. В каждом тесте 26 разных вопросов. Он берет первые четыре вопроса из теста 1 и добавляет их в конец теста 2. Затем он берет четыре первых вопроса из теста 2 и добавляет их в конец теста 1. В каждом тесте теперь 30 вопросов. Сколько одинаковых вопросов в обоих тестах?