Стратегии решения математических задач | страница 54



Задача 7.4

Джером открыл свое первое предприятие по прокату каяков. За прокат он берет почасовую оплату. Каякам присваиваются идентификационные номера, на каждом из них стоят три цифры. Первая цифра — это номер предприятия, а именно 1. Номера у каяков не могут повторяться, а три цифры должны располагаться в возрастающем порядке. Ноль использовать нельзя. Вскоре Джером обнаружил, что использовал все возможные сочетания, которые удовлетворяют условиям. Какое максимальное количество каяков может быть у Джерома?

Обычный подход

Самый распространенный подход — выписывание всех возможных трехзначных чисел, удовлетворяющих условиям задачи. Но как узнать, все ли эти числа учтены? Существует ли метод, обеспечивающий гарантированное решение? Обычный подход явно не самый эффективный!

Образцовое решение

Представим наши данные в табличной форме:



Джером может иметь не более чем 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 каяков.

Задача 7.5

Фермер везет яблоки на рынок. Яблоки уложены в шесть ящиков. Весы на пункте взвешивания могут принять за раз только пять ящиков. Нам дают результаты шести взвешиваний:

Ящик B + ящик C + ящик D + ящик E + ящик F = 200 фунтов;

Ящик A + ящик C + ящик D + ящик E + ящик F = 220 фунтов;

Ящик A + ящик B + ящик D + ящик E + ящик F = 240 фунтов;

Ящик A + ящик B + ящик C + ящик E + ящик F = 260 фунтов;

Ящик A + ящик B + ящик C + ящик D + ящик F = 280 фунтов;

Ящик A + ящик B + ящик C + ящик D + ящик E = 300 фунтов.

Сколько фунтов яблок в каждом ящике?

Обычный подход

Эту задачу можно решить алгебраически, составив шесть уравнений с шестью неизвестными:

B + C + D + E + F = 200;

A + C + D + E + F = 220;

A + B + D + E + F = 240;

A + B + C + E + F = 260;

A + B + C + D + F = 280;

A + B + C + D + E = 300.

Решение шести уравнений довольно трудоемко, поэтому попробуем поискать другой подход к этой задаче.

Образцовое решение

С помощью нашей стратегии организации данных можно упростить решение задачи и сделать его изящным. Начнем с представления данных в табличной форме:



Мы опять получили довольно громоздкий набор уравнений, но можно посмотреть на них с другой точки зрения и организовать данные вертикально, просуммировав колонки в вертикальном направлении:

5A + 5B + 5C + 5D + 5E + 5F = 1500.

Разделив обе стороны уравнения на 5, мы получаем:

A + B + C + D + E + F = 300.

Однако шестое взвешивание в таблице показывает, что A + B + C + D + E = 300 фунтам. Следовательно, ящик F должен весить 0 фунтов. Обратимся затем к пятому взвешиванию, которое показывает, что A + B + C + D + F = 280 фунтам. Однако мы уже знаем, что