Стратегии решения математических задач | страница 36



22>7 = (2>7) (11>7) = (2>7) (11>2) (11>2) (11>2) (11) = (123 + 5) (123–2) (123–2) (123–2) (11).

Теперь вспомним, что произведение двух двучленов вида 123 + s и 123 + t можно представить как 123k + st:

(123 + s) (123 + t) = 123>2 + 123s + 123t + st = 123 (123 + s + t) + st = 123k + st.

Таким образом, мы получаем:

123n — 440 = 123n − 492 + 52 = 123 (n − 4) + 52.

При делении числа 22>7 на 123 остаток равен 52.

Задача 4.15

Во время футбольного матча команды получают 2 очка за сейфти, 3 очка за гол в ворота и 7 очков за тачдаун. Если отбросить 2 очка за сейфти, то команды смогут получать лишь по 3 и по 7 очков. Каково максимальное значение счета, которое нельзя получить в этом матче?

Обычный подход

Очевидный подход — выписывать все возможные значения счета до тех пор, пока не обнаружится максимальное значение, которое невозможно получить. Такой метод, однако, не дает уверенности в том, что не существует более высокое значение.

Образцовое решение

В этом случае можно воспользоваться стратегией принятия другой точки зрения. Вместо поисков значений счета, которые нельзя получить, определим значения, которые можно получить. Счет, который можно набрать, зарабатывая очки на голах в ворота, составляет 3, 6, 9, 12, 15, … Счет, который можно заработать на очках за тачдаун, составляет 7, 14, 21, 28, … Другие значения получаются в результате прибавления очков за гол в ворота или за тачдаун к предыдущему счету. Таким образом, значения, которые нельзя получить, составляют 2, 4, 5, 8, 11. Любой счет, начиная с 12, является доступным, как видно из следующего:



Таким образом, наивысший счет, который нельзя получить, равен 11.

Интересно отметить, что эта ситуация описывается чисто математически.

Наивысший счет, который нельзя получить при использовании двух простых чисел (a и b), равен произведению этих чисел за вычетом их суммы. В нашем случае это (7 × 3) − (7 + 3) = 11.

Задача 4.16

Число 6! (читается как «шесть факториал») равно произведению 6 × 5 × 4 × 3 × 2 × 1 = 720. Найдите значение

Обычный подход

Обычно так и подмывает выписать все факториалы, взять калькулятор или компьютер и вычислить фактические результаты. Это, конечно, позволит получить ответ, но потребует массы арифметических расчетов.

Образцовое решение

Давайте применим стратегию принятия другой точки зрения. Каждый из факториалов можно представить как число, кратное 98! Например, 100! можно записать как 100 × 99 × 98! а 99! — как 99 × 98! В результате мы получаем: