Стратегии решения математических задач | страница 24



и y в виде комплексных чисел, а именно 1 + 2i и 1–2i. В соответствии с условиями нашей задачи нам нужно найти сумму обратных величин этих двух квадратных корней.



Подчеркнем, что в таком методе нет ничего неправильного, это просто не самый изящный способ решения задачи.

Образцовое решение

Прежде чем браться за решение задачи, полезно отступить на шаг назад и посмотреть, что требуется. Заметим, что в данной задаче требуется определить не значения x и y, а сумму обратных величин этих двух чисел. Иначе говоря, нам нужно найти

Используя подход от обратного, мы можем задаться вопросом, к чему это ведет. Сложение этих двух дробей может дать ответ. Таким образом,
Фактически мы сразу получаем ответ, поскольку знаем, что сумма чисел равна 2, а их произведение — 5. Просто подставим эти значения в последнюю дробь и получим:
Задача решена.

Задача 3.2

В распоряжении Лорен 11-литровый и 5-литровый сосуды. Как ей отмерить точно 7 литров воды?

Обычный подход

Большинство людей начинают строить догадки и «переливать воду» туда-сюда в попытке найти правильный ответ. Это своего рода «неинтеллектуальный» метод проб и ошибок.

Образцовое решение

Вместе с тем задачу можно решить более рационально при использовании подхода от обратного. В конечном итоге нам нужно получить 7 литров воды в 11-литровом сосуде, оставив свободным пространство объемом 4 литра. Откуда взялись эти 4 литра? (См. рис. 3.1.)




Чтобы получить 4 литра, мы должны оставить 1 литр воды в 5-литровом сосуде. Но как получить 1 литр в таком сосуде? Наполните 11-литровый сосуд водой и дважды отлейте воду в 5-литровый сосуд. В 11-литровом сосуде останется ровно 1 литр воды. Вылейте этот 1 литр в 5-литровый сосуд (рис. 3.2).

Теперь наполните 11-литровый сосуд и отлейте из него 4 литра воды в 5-литровый сосуд до его заполнения. В 11-литровом сосуде останутся требуемые 7 литров воды (рис. 3.3).



Учтите, что задачи подобного типа не всегда имеют решение. Иначе говоря, если вы хотите составить новую задачу такого вида, следует знать, что решение существует только в тех случаях, когда разница величин, кратных емкостям двух сосудов, может быть равной заданному объему. В нашем случае 2 × 11 − 3 × 5 = 7.

Задача 3.3

По определению, палиндром — это число, которое одинаково читается слева направо и справа налево. Так, числа 66, 595, 2332, 7007 являются палиндромами. Учитель Джека дал классу задание найти сумму первых 15 натуральных чисел. Джек взял калькулятор и сложил все числа от 1 до 15. Результат, к его удивлению, оказался палиндромом. Вместе с тем Джек пропустил одно число. Какое число он забыл включить?