Стратегии решения математических задач | страница 16
Глава 2
Распознавание закономерности
Одной из чудесных сторон математики является возможность выявления закономерностей в решаемых задачах. Известный математик Уолтер Сойер как-то заметил, что математику вполне можно представить, как процесс поиска закономерностей. Одно из самых распространенных применений математики — предсказание того, что происходит регулярным образом. Например, сколько пшеничных лепешек потребуется для трех человек? А для четырех? Для 10 человек? Для n человек?
Умение распознавать закономерности очень важно для решения задач. Выявив закономерность в результате анализа ряда конкретных примеров, вы можете обобщить ее и превратить в более широкое решение. Например, когда просят назвать следующие два числа в ряду 1, 2, 3, 6, 11, 20, 37, __, __, мы должны проанализировать ряд, чтобы понять, есть ли в числах какая-либо закономерность. В конце концов, если первые три члена это 1, 2, 3, то разве не 4 должно идти за ними? А вот и нет! Мы замечаем, что каждый член после третьего представляет собой сумму трех предшествующих чисел. (Это последовательность типа Фибоначчи.) Иначе говоря, 1 + 2 + 3 = 6, 2 + 3 + 6 = 11, 3 + 6 + 11 = 20 и т. д. Если продолжить ряд таким образом, то следующими двумя числами будут 11 + 20 + 37 = 68 и 20 + 37 + 68 = 125.
Даже маленькие дети пользуются закономерностями. Когда малыши начинают ходить в школу, они учатся считать. Закономерности помогают им вести счет единицами, потом двойками, пятерками и т. д. Если задать второкласснику вопрос, какое число будет следующим в ряду 3, 6, 9, 12, …, он спросит себя: «Сколько мне нужно прибавить к каждому числу, чтобы получить следующее?» Это практически естественное использование стратегии поиска закономерности.
Большинство из нас широко пользуются закономерностями в повседневной жизни. Некоторые из этих «закономерностей» требуют мнемонического подхода. Слово «мнемонический» происходит от древнегреческого слова mnemonikos, означавшего запоминающее устройство. Многие из нас знакомы с мнемоническим правилом запоминания порядка цветов в спектре «Каждый Охотник Желает Знать, Где Сидит Фазан» (красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый). Мы используем закономерности для запоминания кода замка шкафчика в раздевалке спортивного зала, телефонного номера и номерного знака автомобиля. В поисках дома с определенным номером мы почти интуитивно ожидаем увидеть нечетные номера на одной стороне улицы, а четные на другой — простая, но очень ценная закономерность.