Нелокальность | страница 72



Эйнштейн был центральной фигурой в этой сумасшедшей драме. В учебниках его вклад в квантовую механику обычно сводится к единственному открытию, известному как фотоэффект, за который он получил Нобелевскую премию в 1921 г. Но его можно справедливо назвать отцом теории, и в течение десятилетия он фактически был единственным, кто верил в нее. Его цель сначала состояла в том, чтобы понять природу света. Начиная с Демокрита, затем при Аристотеле, Ньютоне и Томасе Юнге теоретики метались между представлением о свете как о волне и как о частице. В начатой в 1905 г. серии статей Эйнштейн уладил этот вопрос: свет является и тем и другим. Это звучит так же странно, как и мясник-вегетарианец. Как может свет быть одновременно распределен по гладкой волне и упакован в локализованные сгустки энергии?

Если отбросить очевидную несовместимость в терминах, двойственный характер света создал определенную проблему: он противоречил принципу локальности. Если бы свет был либо частицей, либо волной, было бы не о чем беспокоиться. Частицы скачут повсюду и взаимодействуют путем прямого контакта или, может быть, благодаря близкодействующим силам; волны распространяются через среду или поле в непрерывном движении. Атомисты выступали за частицы, сторонники теории полей были в восторге от волн, но все сходились в том, что свет локален. Но когда он ведет себя и как волна, и как частица, нелокальность кажется неизбежной. Причина состоит в том, что для сочетания этих двух видов поведения требуется высокая степень координации в пространстве. Эйнштейн и другие теоретики не сразу осознали эту нелокальность. Они считали локальность мира само собой разумеющейся; действительно, на их взгляд, реабилитация локальности была самым большим уроком физики XIX в., воплощенным в теории относительности. Но нелокальность прокралась в их сознание, когда они попытались и не смогли совместить двойственное поведение света с одной из старых теорий.

Например, предположим, что свет — это все-таки волна, но производит впечатление, что он частица, поскольку атомы поглощают энергию волны дискретными порциями. Большинство современников Эйнштейна приняло это описание. Но Эйнштейн очень рано увидел, что это противоречит тому, что физик Джон Крамер из Вашингтонского университета назвал «парадоксом пузыря». Волна распространялась бы от источника, как раздувающийся пузырь. Когда она достигает атома, пузырь лопается: волна разрушается и концентрирует всю свою энергию в одном месте, как морская волна, врывающаяся в узкую бухту. К тому моменту пузырь может быть огромным — разрушение волны внезапно произошло бы в обширной области пространства. Как удаленные друг от друга части пузыря узнали бы, что они должны прекратить распространяться дальше? Здесь должен быть задействован какой-то таинственный нелокальный эффект.