Урожаи и посевы | страница 8



Я недурно проводил время, даже во время уроков (тс-с…), решая математические задачки. Скоро те, что я находил в учебнике, перестали меня удовлетворять. Может быть, потому, что чем дальше в лес, тем ясней проявлялась у них тенденция как-то уж чересчур смахивать друг на друга — но еще более потому, что они словно бы падали с неба одна за другой, длинной вереницей, не извещая, откуда они взялись и куда направляются. Трудности в задачах были книжные, а не мои. И все же в вопросах настоящих, не надуманных, не было недостатка.

Так, если заданы длины а, b, с трех сторон треугольника, задан и сам треугольник (с точностью до его расположения), а значит, должна существовать точная «формула», которая выводила бы, например, площадь треугольника как функцию а, b, с. Точно так же, если известны длины всех шести ребер тетраэдра — каков его объем? Над этим, думается, я долго бился, но достиг желаемого в конце концов. Во всяком случае, когда что-то меня «захватывало», я не считал ни часов, ни дней, пробегавших мимо, забывая обо всем остальном! (Да и сейчас не могу иначе…)

То, что меня меньше всего устраивало в наших учебниках математики — это полное отсутствие сколько-нибудь серьезного определения понятия длины (кривой), площади (поверхности), объема (тела). Я дал себе обещание, как только появится досуг, восполнить эти пробелы. Я вкладывал в это основную долю моей энергии от 1945 до 1948 г., будучи в то же время студентом Университета Монпелье. Курсы на факультете были составлены не так, чтобы я мог ими довольствоваться. Ни разу не сказав себе этого ясно, я стал чувствовать, что профессора ограничивались повторением своих учебников, точь-в-точь как мой учитель математики в лицее в Манде. И потому я появлялся в университете только изредка, чтобы держаться в курсе этой вечной «программы». Книг с лихвой хватало, чтобы не испытывать нужды в посещении лекций, но вместе с тем они явно ни в малейшей степени не годились для того, чтобы отвечать на возникавшие у меня вопросы. По правде сказать, они даже не замечали этих вопросов, как не замечали их мои лицейские учебники. При том, что они давали первому встречному правила вычисления длин, площадей и объемов, вкупе с интегралами простыми, двойными, тройными (высшие размерности с осторожностью избегались), вопрос о настоящем определении, казалось, не вставал ни перед моими профессорами, ни перед авторами пособий.

Тогда, по собственному (весьма, впрочем, ограниченному опыту) я вполне мог заключить, что я один на всем свете наделен любопытством к математическим вопросам. Во всяком случае, на протяжении тех лет, проведенных в полнейшем интеллектуальном одиночестве, я думал именно так, нимало о том не тревожась