Система Диофанта | страница 15



«Иркат - повелитель страхов» Капитонов Н А

= Привет! Показал я твой «шторм» соседу. Он сказал, что это смертельно опасная задача.

— Да?

= Моряк или умрет со смеху или убьет составителя.

— Надо же! Оказывается это рискованное занятие. Ты был прав, ругать других действительно легче, чем делать самому.

А я никак не оставлю тему квадратных уравнений, и вроде все сказано, поставлена точка, но появляются новые идеи......

— Для разминки приведу забавное доказательство теоремы Виетта.

Напишем базовую формулу: x>2 — bx + c = 0 мы знаем что b — это сумма, а с ...

= Уже сто раз говорил...

— Не злись. Давай развернем эту запись. Я не хочу для обозначения корней писать x>1, x>2, а то от х в глазах рябить будет. Давай использовать i и j.

x>2 - (i+j)*x + i*j = 0

преобразуем

x>2 - ix - jx + ij = 0

= Ну, и чего получилось?

— Фокус, покус! Ведь i и j это корни уравнения. Подставь-ка вместо x - i или j.

= Да. Действительно забавно, простейшей алгеброй все доказано.

— Обрати внимание, нигде не сказано, что j и i — целые, это могут быть любые числа и не только числа.

— Но давай пойдем дальше. Есть разные способы решения КУ, в том числе графические.

= Да, читал я. Не точно, не всегда достижимо, только, что наглядно.

— Вот наглядность мне сейчас и нужна, да и еще кое что. Рассмотрим только один способ.



Как видишь, строится парабола и места пересечения с осью абсцисс (y = 0) и будут корнями. Чтобы построить параболу ax>2 — bx + c = 0, для начала нужно знать координаты вершины



= Что-то подозрительно знакома мордочка у y>0.


— Дело упрощается тем, что в нашем случае a = 1.

— Смотри, у нас есть координата x>0 вершины параболы, она простейша [ -b/2 ] корни КУ находятся на одинаковом расстоянии от этого числа. Вообще x>0 очень хитрое число, ЛЮБЫЕ два числа отстоящие от него на одинаковые расстояния, дают в сумме b.

Остается только подобрать два симметричных относительно x>0 числа дающих в произведении c.

= Т.е. это другой способ, и про первый можно забыть.

— Забывать ничего не будем! Первый метод «соМножителей» если так сойдутся звезды позволит там «молниеносно» решить КУ, второй «Слагаемых» гарантирует успех, но немного медленнее.

— Не забывай о коварстве составителей. Если y>0 окажется положительной, то парабола не пересечет ось абсцисс, т.е корней не будет...

= То-то я вижу, что-то знакомое — дискриминант.

— Не совсем, но родственник дискриминанта пусть это будет Д ( Д = — дискриминант ).

Давай спланируем алгоритм действий.