Система Диофанта | страница 10



/> Опять ошибся в названии/[3]

= Ну,.... не дочитал.

— ТШёРТ ПОПеРи!!! Ну как мне заставить тебя учится!


— Давай современнее. Почитай о Великой теореме Ферма. 350 лет сильнейшие математики решали задачу — условие которой записывается в одну строчку, да, задача решена, но главное, попутно открыты новые пути, разработаны новые методики...


Ладно, давай не будем претендовать на великие открытия. Но развить свои способности тебе вполне доступно.

= Предлагаешь в цирке удивлять фокусами?

— Неплохая мысль. Цирк и занимается демонстрацией сверх возможностей человека.


Но фантастическими возможностями вычислений обладали как известные ученые (на ум приходит индийский математик Сриниваса Рамануджан) так и не известные счетоводы ( подпольный Корейко).


А лишних знаний и умений не бывает. Меня всегда возмущает афоризм

«Учиться никогда не поздно» - отличная отмазка для лентяев «Если никогда не поздно - отложим»

Можно привести сотни примеров, когда... поздно, - простейший:

В темном переулке тебе навстречу идут трое...


Давай введем новый афоризм «Учись пока не поздно!»


Ни я, ни кто-либо другой не могут гарантировать, что изучение такой-то темы приведет тебя к небывалым успехам. Но любой тебе скажет, что спокойное, жвачное лежание на диване приведет только к ожирению мозга.


= Понятно. Как говорят древние... «Айнун цванцих — фирун зихцих», что означает

«Никто не знает где начало того конца, которым оканчивается начало».


* * *


— Интересно, помнишь ли ты с чего я начал это повествование?

= Отлично помню, со старческого ворчания.

— И все-таки мне хочется понять, для чего можно использовать квадратные уравнения.

= Я тоже поинтересовался, нашел презентацию одного восьмиклассника, вычисление площадей, взлет самолета, стрельба из пушки, фонтаны, архитектура и прыжки в высоту. Практически я занимался только последним, но обходился без уравнений.

— Да, в интернете можно найти многое, вот один десятиклассник написал работу более подробную в том числе привел:


Разные способы решения квадратных уравнений


1. СПОСОБ: Разложение левой части уравнения на множители.

2. СПОСОБ: Метод выделения полного квадрата.

3. СПОСОБ: Решение КУ по формуле.

4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

5. СПОСОБ: Решение уравнений способом «переброски».

6. СПОСОБ: Свойства коэффициентов КУ.

7. СПОСОБ: Графическое решение КУ.

8. СПОСОБ: Решение КУ с помощью циркуля и линейки.


Как видишь, наш способ четвертый.

Если опять посмотреть на систему Диофанта и изложить ее словами получится: