Система Диофанта | страница 10
/> Опять ошибся в названии/[3]
= Ну,.... не дочитал.
— ТШёРТ ПОПеРи!!! Ну как мне заставить тебя учится!
— Давай современнее. Почитай о Великой теореме Ферма. 350 лет сильнейшие математики решали задачу — условие которой записывается в одну строчку, да, задача решена, но главное, попутно открыты новые пути, разработаны новые методики...
Ладно, давай не будем претендовать на великие открытия. Но развить свои способности тебе вполне доступно.
= Предлагаешь в цирке удивлять фокусами?
— Неплохая мысль. Цирк и занимается демонстрацией сверх возможностей человека.
Но фантастическими возможностями вычислений обладали как известные ученые (на ум приходит индийский математик Сриниваса Рамануджан) так и не известные счетоводы ( подпольный Корейко).
А лишних знаний и умений не бывает. Меня всегда возмущает афоризм
«Учиться никогда не поздно» - отличная отмазка для лентяев «Если никогда не поздно - отложим»
Можно привести сотни примеров, когда... поздно, - простейший:
В темном переулке тебе навстречу идут трое...
Давай введем новый афоризм «Учись пока не поздно!»
Ни я, ни кто-либо другой не могут гарантировать, что изучение такой-то темы приведет тебя к небывалым успехам. Но любой тебе скажет, что спокойное, жвачное лежание на диване приведет только к ожирению мозга.
= Понятно. Как говорят древние... «Айнун цванцих — фирун зихцих», что означает
«Никто не знает где начало того конца, которым оканчивается начало».
* * *
— Интересно, помнишь ли ты с чего я начал это повествование?
= Отлично помню, со старческого ворчания.
— И все-таки мне хочется понять, для чего можно использовать квадратные уравнения.
= Я тоже поинтересовался, нашел презентацию одного восьмиклассника, вычисление площадей, взлет самолета, стрельба из пушки, фонтаны, архитектура и прыжки в высоту. Практически я занимался только последним, но обходился без уравнений.
— Да, в интернете можно найти многое, вот один десятиклассник написал работу более подробную в том числе привел:
Разные способы решения квадратных уравнений
1. СПОСОБ: Разложение левой части уравнения на множители.
2. СПОСОБ: Метод выделения полного квадрата.
3. СПОСОБ: Решение КУ по формуле.
4. СПОСОБ: Решение уравнений с использованием теоремы Виета.
5. СПОСОБ: Решение уравнений способом «переброски».
6. СПОСОБ: Свойства коэффициентов КУ.
7. СПОСОБ: Графическое решение КУ.
8. СПОСОБ: Решение КУ с помощью циркуля и линейки.
Как видишь, наш способ четвертый.
Если опять посмотреть на систему Диофанта и изложить ее словами получится: