Пятьдесят занимательных вероятностных задач с решениями | страница 32



₁ = 1). Чтобы он не стал банкротом с вероятностью 1/2, вероятность его выигрыша в каждой отдельной партии должна быть p = 2/3. То, что банкротство неизбежно при p = 1/2, является неожиданным для большинства из нас. Обычно считают, что если отдельные партии «безобидны» (средняя потеря равна нулю), то и вся игра безобидна. Разумеется, это представление в обычном смысле верно. Если мы представим такую игру с p = 1/2 и большим числом партий, то среднее значение денежной суммы на руках после n туров равно 1 для каждого конечного числа n. Таким образом, отсутствие «безобидности» является одним из парадоксов бесконечного.

Другой удивительный факт состоит в том, что при p = 1/2 среднее число шагов, требуемое для поглощения, бесконечно. Случай p = 1/2 является странным и глубоким.

Вас может заинтересовать применение указанного здесь метода к частице, выходящей из точки x = m, а не из точки x = 1. Обобщение приведенного выше результата, показывает, что вероятность поглощения с абсциссы x = m есть [(1 − p)/p]>m или 1, в зависимости от того, будет ли p больше или меньше 1/2. Если p > 1/2 и m велико, то весьма вероятно, что частица избежит поглощения, и поэтому вероятность поглощения мала, а не равна 1.

Если частица выходит из начала координат 0 и ей разрешается делать шаги в обоих направлениях с вероятностью p = 1/2, то в другой классической задаче о блуждании ставится вопрос о том, вернется ли частица когда-либо в начало координат. Мы уже видели, что так действительно будет, ибо она заведомо вернется из положений x = 1 и x = −1. Дальнейшие сведения об этой задаче будут сообщены ниже.

36. Решение задачи о разорении игрока

Наша задача — специальный случай общей задачи о случайном блуждании с двумя поглощающими барьерами. Исторически эта проблема была поставлена как игровая, называемая задачей о разорении игрока, и многие знаменитые математики занимались вопросами, связанными с ней. Сформулируем задачу в общем виде.

Игрок M имеет m денежных единиц, игрок N — n единиц. После каждой игры один игрок выигрывает, другой проигрывает единицу. В каждой партии вероятность выигрыша игрока M равна p, а выигрыша N равна q = 1 − p. Игра продолжается до разорения одного из игроков. На рис. 36.1 указана сумма денег, которую игрок M имеет в настоящий момент. Он начинает с положения x = m. Когда x = 0, он разорен, при x = m + n банкротом является игрок N.

Рис. 36.1. Схематическое изображение задачи о разорении игрока